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Abstract

by

Li Yu

Clouds have joined clusters and grids as powerful environments for large scale

scientific computing. While these platforms provide virtually unlimited computing

resources, using more resources for an application does not always result in supe-

rior performance. The extra amount that does not contribute to any performance

increase is a waste. This dissertation seeks to answer the question of how many

computing resources should be allocated for a given workload. Two categories of

workloads – static and dynamic, are identified where viable solutions are found for

this problem. For static workloads, we show that distributed abstractions allow for

accurate performance modeling on distributed, multicore, and distributed multicore

systems and thus can automatically make better resource allocation decisions. For

dynamic workloads, we present dynamic capacity management as a solution to avoid

resource waste without compromising on the application performance. We evaluate

the effectiveness of this technique on a selection of workload patterns, ranging from

highly homogeneous to completely random, and observe that the system is able to

significantly reduce wasted resources with minimal impact on performance. Finally,

we show that both solutions have been successfully applied in real world scientific

applications in areas such as bioinformatics, economics, and molecular modeling.
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CHAPTER 1

INTRODUCTION

Computer systems have become an integral part of the modern economy. More

and more research and operations in science, engineering, and business are now be-

ing powered by computers 24/7 around the globe. As the complexities of computer-

provided services and the difficulty of cutting-edge science questions keep increasing,

the demand for greater computing power has never ceased to grow. Continuous

advancements in the chip fabrication process have been bringing greater power to

individual computers. However, according to the Moore’s law, the single chip perfor-

mance can only be doubled approximately every two years. Even in the early days,

such pace of performance increase is not sufficient to accommodate the increase in

computer program complexities.

To further improve computer execution performance, various techniques have been

created to exploit the parallelism in computer programs. Symmetric multiprocessing[43],

which emerged in the 1960s, is a technique that allows two or more processors to

share the same main memory and peripherals. The multiple processors can then

simultaneously execute computer programs on the same operating system which re-

duces the total programs execution time. In the 1970s and 1980s, pipeline[82] and

superscalar[51] architectures were built into some commercial processors to exploit

the instruction-level parallelism. Concurrent executions of multiple computer in-

structions became possible with these architectures and the thus the overall CPU

throughputs were improved. As the chip temperature became intractable when the

CPU frequency is pushed beyond 4 GHz, multi-core processors started to dominated
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the processor market in the late 2000s. In the same period, GPU computing[76]

technology emerged and further accelerated certain scientific and engineering appli-

cations with thousands of small but efficient cores on the GPU chip. All the above

techniques aim to improve the performance of an individual computing node and

have been successfully applied in the construction of supercomputers.

The advent of computer networks lead to the idea of connecting multiple comput-

ers to execute a single computer program or application. The computational work

that needs to be performed in an application is referred to as a workload. To lever-

age multiple computers, a workload is divided into multiple tasks and these tasks are

dispatched to those computers for simultaneous executions. Computer clusters[12],

which is a group of computers connected by a local area network, entered the world

of parallel computing in the 1970s. They usually rely on centralized management

where a head computing node manages the computing nodes and dispatches tasks to

them. With the widespread of the Internet, CPU scavenging computing and volun-

teer computing[8][94] systems started to gain popularity in the 1990s. These systems

allow idle or donated computing resources around the world to join the computation

of a single problem. In the 2000s, Grid computing[35] emerged with the goal of al-

lowing computing resources from multiple administrative domains to be combined to

solve a single computational problem as needed. In the late 2000s, advances in virtu-

alization technologies[73] lead to the birth of cloud computing[11]. According to Mell

and Grance [64]: ”Cloud computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction”.

While modern distributed systems, such as clusters, clouds, and grids, have been

allowing users to orchestrate tasks on thousands of computing nodes and achieve

superior performance, it is challenging to use these computing resources properly
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and efficiently. (Hereafter, we refer to all of these systems as clusters.) A user that

wishes to execute a large workload with some inherent parallelism is confronted with

a dizzying array of choices. How should the workload be broken up into smaller jobs?

How should the data be distributed to each computing node? How many nodes or

CPU cores should be used? Should the computing nodes be allocated all at once or

according to a set schedule? What actions should be taken when some computing

resources fail during tasks execution? Will the network present a bottleneck? Last

but not least, would leveraging remote computing nodes even result in improved

performance given that the transfer of jobs over the network adds overhead? Often,

the answers to these questions depend heavily on the properties of the system and

workload in use. Changing one parameter, such as the size of a file or the runtime of

a job, may require a completely different strategy.

This dissertation focuses on the question of how many computing resources

should be allocated for a given application in a certain computing environ-

ment? Modern clusters provide effectively unlimited computing power at marginal

cost with minimal barriers to entry for the end user. With little effort, a single user

can submit jobs to a campus cluster, schedule time on national computing infrastruc-

ture, or purchase computing time from a commercial cloud provider – or perhaps all

three at once! However, the user of an application is presented with a problem – ex-

actly how many resources should be allocated for the application? Selecting too few

will result in less than maximum performance. Too many can result in slowdowns,

but can also result in contention, crashes, and excess charges as critical resources like

the network are overloaded. Further, the ideal selection will change over time as the

infrastructure evolves, or the user selects new input data or parameters. In our expe-

rience, end users are much too optimistic about the scalability of their applications,

and generally err on the side of too many resources.

Finding the optimal resource allocation for a given workload could be difficult.
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If the workload’s computational structure (the graph formed by its task dependen-

cies) and task properties (input/output data sizes and computational complexity)

are unknown, the problem is essentially intractable. This is analogous to the halting

problem[17] in the general case. Without knowing the tasks properties, it is im-

possible to evaluate the performance of any resource allocation. Without knowing

the workload structure, it is impossible to estimate the global impact of a resource

allocation directly because a suitable resource allocation for the known part of the

workload might be inappropriate for the incoming (unknown) part of the workload.

Knowing the structure and tasks properties alone does not necessarily make the

problem tractable. For example, for a workload of independent tasks and known task

execution times, calculating the optimal number of computing nodes that maximizes

the workload execution performance could be NP-hard[65]. In order to compare the

superiority of different amount of resource allocations, one must first determine the

optimal task scheduling strategy that maximizes the workload performance for a

given number of computing nodes. Classic multiprocess scheduling problem[38] and

job shop scheduling[39] problem are examples of such scheduling problems have been

proven as NP-hard. Because a sub-step in the resource allocation process is already

NP-hard, the entire problem is at least NP-hard.

However, if there are regularities in a workload’s task properties and/or struc-

ture, the complexity of the problem could be reduced to a more tractable level. For

example, in the multiprocess scheduling problem, if we know that all the tasks are

of the same size (task regularity), the optimal scheduling strategy becomes obvious,

which is to dispatch tasks among the processors evenly. Also in this example, the fact

that all tasks are independent can be considered as a workload structure regularity.

In general, the regularities in a workload allow workload population characteristics

to be estimated with sample characteristics, which could greatly reduce the solution

space, and thus simplifies the problem. The more regularity is known in advance
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Abstractions Capacity Management

Workload

Static Dynamic

Figure 1.1: Two Categories of Workloads
For static workloads, if the computational structures and tasks properties are regu-
lar, abstractions can be used to help make resource allocation decisions. For dynamic
workloads, the capacity management method can effectively avoid resource waste with-
out compromising on the application performance.

about the workload, the more tractable the resource allocation problem is.

In this dissertation, we identify two categories of workloads with different degrees

of regularities and present the resource allocation strategies for each of them respec-

tively. We define a workload as a static workload when its structure is set and known

prior to execution. If the structure can not be determined in advance, the workload

is referred to as a dynamic workload. For example, when tasks in a workload are

submitted to a batch system when ready, the batch system would consider the work-

load as dynamic because it never knows what tasks may be submitted next after as

ones currently in the queue are finishing. If the resource allocator is not the batch

system, but a program that has the specification of the workload’s entire structure,

then the workload is static to the resource allocator. For static workloads whose com-

putational structures and task properties are regular, we show that abstractions can

help make better resource allocation decisions. For dynamic workloads, we present

dynamic capacity management as a solution to avoid resource waste without com-

promising on the application performance. The workload categorization is shown in

Figure 1.1.

For regular static workloads, abstractions can effectively model their performances
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for a given set of resources and thus are able to assist making resource allocation

decisions. An abstraction is a declarative structure that joins simple data structures

and small sequential programs into parallel graphs that can be scaled to very large

sizes. Each abstraction is used to execute workloads that follow the same execution

pattern. Because static workloads have known structures, they could be executed

with abstractions their structure is recognized by existing abstractions. We argue

that abstractions are an effective way of enabling non-expert users to harness clusters,

multicore computers, and clusters of multicore computers. Because an abstraction

is specialized to a restricted class of workloads, it is possible to create an efficient,

robust, scalable, and fault tolerant implementation.

In this dissertation, we focus on three specific abstractions: All-Pairs, Wavefront,

and Makeflow abstractions. The All-Pairs and Wavefront abstractions are intended

for two type of regularly structured workloads – each abstraction assumes a specific

execution pattern. The regularity in the workload structure is a prior knowledge in

both abstractions. As we will show later in the dissertation, this workload struc-

ture regularity, combined with the task regularity, allows for performance modeling

on multicore systems, and clusters of multicore systems. The All-Pairs performance

modeling has been previously studied in distributed environments with single-core

computing nodes. I extended the research in environments with multi-core comput-

ing nodes. And the modeling result is sufficiently accurate to assist making useful

resource allocation decisions such as whether to run the workload with 8 local CPU

cores or with 4 remote dual-core computing nodes. The Makeflow abstraction is

designed for arbitrary DAG (Directed Acyclic Graph) structured workloads. It is

useful for workloads whose execution pattern is not capture by any existing abstrac-

tions (which are usually designed for regularly structured workloads). Although the

workloads that can be run with the All-Pairs or the Wavefront abstractions can be

also described by the Makeflow abstraction, the performance with the former could be
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much greater as the known regularity in the workload structure allows for optimized

task scheduling.

All-Pairs and Wavefront abstractions have both been used to accelerate real world

applications. For example, in biometrics, the evaluation of identification algorithm

fits the All-Pairs pattern. An identification algorithm compares two human charac-

teristics (e.g. iris image) and outputs their similarity. The evaluation application

takes two known sets of characteristics and compares every characteristic in one set

with every element in the other using the target algorithm. The resulting similarity

matrix will then be used to determine the effectiveness of the identification algo-

rithm. The evaluation of classifiers in data mining also follows the similar workload.

Another example is the first step in genome assembly – comparing each measured

gene sequence to every other sequences (sequenced from the same DNA). Wavefront

represents a number of simulation problems in economics and game theory, where the

initial states represent ending states of a game, and the recurrence is used to work

backwards in order to discover the effect of decisions at each state. Wavefront also

represents the problem of sequence alignment via dynamic programming in genomics.

For dynamic workloads, it is impossible to make global performance modeling

in advance because the workload structure is unknown. In a research context, one

might run the exact same workload at multiple scales in order to generate a parallel

speedup curve, and then choose the best value. However, in a production computing

context, the end user gains no value from running the same workload more than

once. Instead, an acceptable decision must be made on the first attempt. For static

workloads like All-Pairs and Wavefront abstractions, this can be achieved by working

with declared knowledge of the entire workload. For dynamic workloads, information

must be gained incrementally. We argue the problem should be addressed through

two combined techniques. First, a workload must have some degree of introspection

into its own performance to understand and report critical properties such as parallel
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efficiency and network capacity. Second, an external resource allocator should use

this information to allocate and manage the resources consumed at runtime. The

resource allocator should be external to the workloads to isolate computer program

bugs (in the workloads) from the credit card bill, particularly if the end user is not

the bill-payer.

The solution for dynamic workloads is referred to as capacity management. It

relies on three basic assumptions: (a) workloads are composed of tasks that have a

relatively stable computation-to-data ratio (this is task regularity), (b) task proper-

ties are not known in advance, and (c) there are more tasks than workers available, so

that there is an opportunity to measure and adjust over time. The system will adapt

to changes in computation-to-data ratio, as long as the task mix is stable for a suffi-

cient period for the system to adjust. For example, 1000 tasks of type A followed by

1000 tasks of type B can be handled, with some period of adjustment as the B tasks

begin. If the tasks have no commonality and nothing is known of their properties

in advance, then the resource allocation problem is essentially intractable. However,

we will show that even with random workloads, our solution does an adequate job of

preventing resource waste.

There are many real world applications that can satisfy the above assumptions

required by the capacity management method. As an example, we work with a

bioinformatics group at Notre Dame that runs production workloads consisting of

thousands of tasks through this system. For example, a BLAST[7] workload contains

tasks that compare query DNA sequences with reference DNA sequences. For a single

BLAST workload, the reference sequences are the same across all the tasks. The query

sequences are different in each task but are of similar sizes (we split a large query

into smaller equal-size pieces). Although there could be variances in the BLAST job

execution times even if the query sequence sizes are the same, for the workloads our

users run, such variances exist but only on the few tasks that contain the actual
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matches to the database, so that over 90% of the tasks have similar execution times.

Similar application properties apply to the workloads that use other gene sequence

comparison applications, such as BWA[55], SSAHA[74], and SHRIMP[90].

We have developed a range of resource allocation policies in the capacity manage-

ment with increasing refinements, taking into account the computation and network

loads of the master process and the tasks in the workload. To evaluate these poli-

cies, we test them against a range of five synthetic applications, ranging from a

single burst of identical tasks to continuous random bursts of random tasks. We

demonstrate that these techniques significantly reduce wasted resources with mini-

mal impact upon performance. Additionally, although these techniques assume some

degree of homogeneity in the individual tasks, they are still reasonably effective on

random workloads. And this is why we did not distinguish irregular and regular

workloads under the dynamic workload category in Figure 1.1.

We have implemented the concepts of abstractions and capacity management in

CCTools – a distributed computing tools software package developed by the Cooper-

ative Computing Lab at Notre Dame. The All-Pairs, Wavefront, and Makeflow are

standalone applications. The dynamic capacity management is implemented within

the context of the Work Queue application framework, but the concepts are easily

applied to other similar distributed computing frameworks.
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CHAPTER 2

RELATED WORK

2.1 Batch Systems

A batch system manages the execution of computer jobs on a set of computing

resources. It manages the resource allocation at the task level, which is different

from the workload level that this dissertation focuses on. However, the basic ideas

in resource management is applicable in both levels and the two levels of resource

management can complement each other. A job that gets submitted to a batch

system usually consists of a computer program and some input data that needs to

be processed by the program. Multiple users can submit multiple jobs to the system

simultaneously. A batch system usually puts submitted jobs into several queues

such as queues for serial or parallel jobs, and queues for long or short jobs. It

constantly monitors the status of its managed resources and dispatches queued jobs

to them when desired resources (the ones that match the job’s requirements on CPU,

memory, disk space, software licenses, and etc.) become available. Because batch

systems have centralized control over the shared computing resources, it is possible

to optimize the job scheduling to improve the overall resource utilization and system

throughput. Also, the jobs can be treated accordingly with respect to their priorities.

The following is an overview of some popular batch systems.

SGE [41] (Sun Grid Engine), LSF [108] (Load Sharing Facility), and PBS [46]

(Portable Batch System) are popular established batch systems maintained by dif-

ferent companies. They are all used to manage job executions on dedicated com-

puting resources. A typical computer cluster that deploys such batch system would
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consist of a master host and multiple execution hosts (the terminologies may differ

in different systems). The batch system software provides a standard interface for

users to submit, delete, and monitor their jobs from the master host. The jobs are

immediately queued when submitted to the master host and will be dispatched to

execution hosts for actual execution when appropriate. In general, the job schedul-

ing is based on the following criteria: the cluster’s current load, the job’s impor-

tance, the execution host’s performance, and job’s resource requirements. These

systems support a range of customizable job scheduling policies, such as FCFS (First

Come First Serve), fairshare scheduling[33], backfilling[69], deadline scheduling[23],

exclusive scheduling, preemptive scheduling[106], and SLA (Service Level Agreement)

driven scheduling[59]. These policies allow the allocated resources to effectively match

the needs of the job submitters.

Condor [99] is an open-source high-throughput batch system for compute-intensive

jobs developed at the University of Wisconsin-Madison. Although Condor has been

renamed to HTCondor in 2012, we will refer to it as Condor in the rest of the dis-

sertation. Like with other batch system, Condor provides job queueing, scheduling,

monitoring, and resource management functionalities. But in addition to manag-

ing clusters of dedicated computing resources, Condor is capable of integrating the

power of heterogeneous, non-dedicate workstations (a concept referred to as cycle

scavenging). Jobs can be farmed out to desktop workstations when they are idle.

Condor uses a ClassAd[83] mechanism to match jobs with qualified resources (e.g.:

Operating System = Linux, Memory>1 GB). Condor job queues implement priority

queueing. The amount of resources that a job can get is based on the user’s dynamic

priority. The fairshare algorithm ensures that each user gets the same amount of

resources over a specified period of time and lower-priority user’s jobs will not be

starved. Condor is also one of the supported scheduler in GRAM[25] (Grid Resource

Allocation Manager, a component of the Globus Toolkit) and has been the resource
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management backend for many Grid applications.

2.2 Workflow Management Systems

A workflow is a collection of jobs with dependencies among them. A job in a

workflow can be dispatched for execution only after all the jobs that it is dependent

on have been completed successfully. To execute a workflow on a cluster managed by

an batch system, the jobs must be submitted to the cluster incrementally as the job

dependencies are resolved. Of course, the users do not want to, and most of the times

can not afford to, monitor the job status constantly and manually submit more jobs

when the submitted ones are finished. Thus, workflow systems are created to manage

the automatic executions of whole workflows. The workflow systems usually accept a

description of the entire workflow, including job descriptions and dependencies, and

submit individual jobs to the batch systems when prerequisite jobs are done. The

following is an overview of some popular production workflow management systems.

DAGMan [98] is a scheduler for DAG (Directed Acyclic Graph) structured work-

flows built for Condor. A DAG structured workflow would form a DAG if we draw

each job as a vertex and each dependency (between two jobs) as an edge connecting

the two corresponding vertices. Because Condor does not schedule jobs based on

dependencies (jobs are considered independent to each other once submitted to Con-

dor), DAGMan is a necessary layer of software for managing the automatic execution

of DAG workflows. If a job fails, DAGMan can be configured to retry failed jobs

for a certain mount of times without interrupting the execution of the rest of the

workflow. If an entire workflow fails, only unfinished jobs will be dispatched upon

recovery. DAGMan also supports advanced features such as allowing jobs within a

workflow to have different priorities and limiting the total amount of resources can

be acquired by the workflow at any given time.

Pegasus [29] is a workflow management system for mapping and executing work-
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flows on various computing environments including Condor, Grid infrastructures such

as Open Science Grid and TeraGrid, and cloud computing platforms such as Amazon

EC2[1] and Nimbus[3], and many campus clusters. The same workflow can run in any

of these systems or leverage resource across multiple platforms. Given an abstract,

high-level description of the workflow, Pegasus is able to automatically locate the

necessary software, required data, and qualified computing resources for execution.

The tasks in a workflow may be automatically reordered, grouped, or re-prioritized to

optimize the performace of the entire workflow execution. The processed, or restruc-

tured workflow description will be passed to DAGMan, its execution engine, for actual

execution. Pegasus has been accelerating many real world applications in different

domains such as bioinformatics, chemistry, neuroscience, and climate simulation.

Taverna [48] is an open-source suite of tools to build and execute scientific work-

flows at a higher level of workflow abstraction. Instead of asking users to construct

workflows from files and computer programs, Taverna exposes data and operations to

the users in an integrated workflow design environment. The operation in a Taverna

workflow can be any WSDL-style web service, which allows workflows to be con-

structed from commonly accessible web services. Users can search for services from

service catalogs (e.g. BioCatalogue) to include in their workflows without knowing

how to invoke them. Once data flows have been defined across identified services, the

workflow is ready to be executed. Taverna workflows can be executed on grids and

clouds infrastructures as well. EGEE[54], caGrid[91], KnowARC[70], and NGS[40]

are examples of running Taverna workflows on grids. Next Generation Sequencing,

SCAPE, and e-Science Central are examples for the clouds.

Kepler [6] is a workflow management system that faciliates the creating, execut-

ing, and sharing of scientific workflows across multiple disciplines. Like with Taverna,

Kepler provides direct access to commonly used data archives and allows construct-

ing workflows from web services. Unlike many other workflow systems, Kepler allows
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common models of computation to be applied to the construction of a workflow.

Examples of such common models are Synchronous Data Flow, Continuous Time,

Process Network, and Dynamic Data Flow. Thus, complex workflows can be build

with simpler components. Kepler workflows can be exported and shared via web

services and thus users can conveniently search and integrate others’ analysis work-

flows into their own workflows. In addition to invoking web services directly, Kepler

supports job execution on grids and grid-based data access.

Galaxy [6] is a scientific workflow management system that allows computational

biology scientists to leverage distributed computing power without prior computer

programming experience. It is originally developed for genomics application, but

now supports a wide range of bioinformatics applications. Galaxy provides a web-

based graphic user interface for domain scientists to construct analysis workflows

and manage scientific data. The input data and computational tasks can be selected

from dynamically generated graphic menus and the results are displayed in intuitive

plots. Galaxy’s high level of accessibility greatly benefits the end users who are

not trained for computer programming. And more importantly, as a full-fledged

workflow management system, it records all the tools, parameters, and data that

have been used in the workflows and thus ensures that any result obtained from the

system can be reproduced and reviewed later. Galaxy’s is now a leading platform in

computational analysis of DNA sequence data.

As summarized in [105], some of these systems use static scheduling [50] and some

of them use dynamic scheduling [79] or both. The scheduling strategies used in these

systems are all performance driven. Our work does not seek a better scheduling

scheme to improve performance. Instead, we focus on identification of potential

resource waste and make the system be able to avoid such waste automatically at

runtime.
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2.3 Distributed Computing Abstractions

A distributed computing abstraction is a common and abstract computational

model extracted from a range of applications. As a software tool, it allows users to

construct parallel applications that have the same computational model with minimal

efforts. Usually the users only need to supply the input data and the serial programs.

The users do not even need to master the techniques for using distributed computing

resources. The distributed computing abstractions would plug the user inputs into

the computational models and conduct the parallel computations in a suitable and

efficient way in the actual distributed computing environment.

Bag-of-Tasks[24] is a simple but powerful abstraction of many applications across

a broad range of disciplines. It represents the computational model of independent

tasks. Many real world applications fall into this model, such as parameter sweeps,

massive search, image processing, and computational biology. Because the model is so

general, many parallel/distributed computing research are based on this model. The

aforementioned classic multiprocess scheduling and job shop scheduling are based on

this model. Many scheduling algorithms[18], such as FCFS (First Come First Serve),

Min-Min, Max-Min, and Sufferage, have been studied for BoT applications based on

how much prior knowledge is known about the tasks and the goal of the computa-

tion, such as to minimize cost or to maximize performance. Because there are no

inter-task communications, BoT applications are especially suitable for Grid com-

puting platforms (Condor, BOINC[8], and OurGrid[10]) where network bandwidth

is precious. Projects such as SETI@Home[9] and Folding@Home[53] have success-

fully demonstrated that BoT applications can achieve great scalability over widely

distributed grids.

The All-Pairs abstraction [66] computes the Cartesian product of two sets, gen-

erating a matrix where each cell M[i,j] contains the output of the function F on

objects A[i] and B[j]. This computational model is found in many different fields. In
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bioinformatics, one might compute All-Pairs on a set of gene sequences as the first

step of building a phylogenetic tree. In biometrics, one might compute All-Pairs to

determine the accuracy of a matching algorithm on a collection of faces. In data

mining applications, one might compute All-Pairs on a set of documents to gener-

ate a graph of relationships. The All-Pairs abstraction allows large-scale pair-wise

comparisons to be created by specifying only a few command-line arguments. And

more importantly, the abstraction automatically optimizes the parallel execution of

the tasks on the target computing environment and tends to be more efficient than

a naive implementation of the same computational pattern.

Map-Reduce [28] is a distributed computing abstraction popularized by Google

for using it to index the enormous amount of contents on the Internet. Map-Reduce

allows users to invoke large-scale parallel processing by defining two simple functions

– the mapper and the reducer. The mapper defines how data should be processed,

or more specifically, be transformed to intermediate name-value pairs. The reducer

defines how the intermediate name-value pairs should be combined into the final re-

sult. When executing a Map-Reduce application, the original input data is usually

divided into pieces and the pieces are spread (and often replicated) across multiple

computing nodes. The mapper and reducer functions are then moved to the comput-

ing nodes, which have the data pieces, for actual execution. Because the computation

is moved to where the data is, Map-Reduce is well-suited for data-intensive appli-

cations. Popular implementations of Map-Reduce include Hadoop [16], Sphere [44],

and Twister [32].

2.4 Auto-Scaling Techniques

Batch systems such as Condor, SGE, and PBS Pro provide interfaces for mul-

tiple users to request abstract, dynamic, and managed computing resources. These

systems handle scheduling, load-balancing, and fault-tolerance at the task level. Our
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Work Queue application framework, as an implementation of the Pilot-Job concept,

adds the possibility of workload-level scheduling and data caching. Pilot-Job is essen-

tially an abstraction that allows computing resources to be acquired by a workload

such that the workload’s tasks can be scheduled to the resources directly instead of

going through a job scheduler (e.g. waiting in a batch system’s job queue). Condor-

Glidein [36] is one of the ealiest implementations of the Pilot-Job idea. A glidein

is a computing node that can automatically join a specified Condor pool and be-

come dedicated resource to that pool. The worker in the Work Queue framework is

analogous to a glidein, which is the pilot job.

There are many successful Pilot-Job frameworks with different specialties. SAGA

BigJob [58] interfaces with various computing infrastructures (Grids and Clouds) and

natively supports MPI[95] applications. In order for an application to utilize this

framework, the application needs to specify the number of resources (i.e. pilot jobs)

needed prior to submitting individual tasks. Falkon [80] is optimized for efficiently

dispatching many small tasks. Its resource provisioner dynamically matches the

number of executors (the pilot job) to the number of queue tasks without surpassing

a user-defined upper-bound. Coaster [45] uses a centralized process – called Coaster

Service, to queue user jobs and submit pilot jobs based on the characteristics of

the queued user jobs. The Coaster Service determines the amount of pilot jobs by

matching the total acquired resource time to the total job time, which necessitates

prior knowledge of job execution times. GlideinWMS [93] is a Glidein based workload

management system. Its front-end polls the user’s local Condor pool to see if the

number of glideins (worker nodes) is greater than the number of user jobs. If not, it

submits requests to the glidein factory to create more glideins to join the user’s local

Condor pool. DIRAC [103] and PanDA [60] are another two examples of Pilot-Job

based workload management systems which submit additional pilot jobs to match

each newly queued job. Most of these systems equate the number of user jobs with
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the number of pilot jobs needed. However, this might lead to significant resource

waste due to limited network bandwidth and job characteristics as will be shown in

section 4.2. The capacity management technique described in this dissertation can be

used to reduce such resource wastes. It is implemented in our Work Queue framework,

but the idea can be applied to any of the aforementioned Pilot-Job frameworks.

As clouds provides the illusion of unlimited costly resources, techniques that dy-

namically scale resources according to application needs have gain great popularity in

both industry and academia. AWS[2][15], RightScale[4], and Elastack[14] allow users

to scale resources based on system metrics such as CPU utilization and time sched-

ule. Elastic VM[27] scales resources vertically (single-CPU instance to multi-CPU

instance) based on CPU utilization history and has been shown to reduce response

time in both the web-tier and the database-tier. Our approach scales resources hor-

izontally based on the application resource needs, in contrast to hardware metrics.

Another way of approaching the dynamic resource scaling problem is to first predict

the workload and then use certain function to determine the appropriate resource

amount for the incoming workload. Caron et al.[21] introduces a string matching

based algorithm to predict future workload based on where the recent workload pat-

tern stands in the historical workload pattern. Instead of trying to obtain more

accurate estimate of future workload, Lin et al.[56] describes how trend analysis –

predicting the direction of workload change can help making better auto-scaling de-

cisions. Roy et al.[89] uses a second order autoregressive moving average method to

predict the incoming workload and minimizes the scaling cost based on how far the

estimated response time is from the SLA bounds, cost of leasing additional resources,

and the cost of re-configuration. Qiu et al.[78] uses a non-linear autoregressive neural

network method to predict future workload and uses a function that minimizes re-

source provision without violating SLA (e.g. percentage of unsatisfied user requests)

to determine the amount of resources.
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Nephele [104] uses a profiling subsystem to monitor the time resources spent

on user code and waiting for data. The feedback data is not currently used to

dynamically adjust the amount of resources but it is in their future work. Marshall

et al.[63] proposes a elastic site architecture that extends local cluster capacity with

cloud resources and examines three dynamic resource allocation policies. Similar

to the capacity estimation assumption, Nagavaram et al.[71] assumes the workloads

include tasks of equal sizes and predicts the number of cores needed based on the

execution times of the first N tasks (N is equal to the number of cores in the cluster).

Mao and Humphrey[62] introduces methods to scale cloud resources based on deadline

and budget constraints. And their recent work in [61] presents methods to minimize

cloud computing resource cost given user assigned soft deadlines on jobs (each job can

have multiple tasks). Their solution takes advantage of the different cost-efficiencies

in on-demand VM instances and uses heuristics to obtain an optimized task-resource

mapping. Our work differs in that we use dynamic configuration where we rely on

the continuously changing properties reported by the application, instead of requiring

information in advance.
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CHAPTER 3

STATIC WORKLOADS

A static workload is a workload whose computational structure is known prior

to execution. A user that wishes to execute a static workload in a distributed en-

vironment is confronted with a dizzying array of choices. How should the workload

be broken up into jobs? How should the data be distributed to each node? How

many nodes should be used? Will the network be a bottleneck? Often, the answers

to these questions depend heavily on the properties of the system and workload in

use. Changing one parameter, such as the size of a file or the runtime of a job, may

require a completely different strategy.

Multicore systems present many of the same challenges. The orders of magnitude

change, but the questions are similar. How should work be divided among threads?

Should we use message passing or shared memory? How many CPUs should be used?

Will memory access present a bottleneck? When we consider clusters of multicore

computers, then the problems become more complex.

We argue that abstractions are an effective way of enabling non-expert users

to harness clusters, multicore computers, and clusters of multicore computers. An

abstraction is a declarative structure that joins simple data structures and small se-

quential programs into parallel graphs that can be scaled to very large sizes. Because

an abstraction is specialized to a restricted class of workloads, it is possible to create

an efficient, robust, scalable, and fault tolerant implementation.

In previous work, we introduced the All-Pairs [66] and Classify [67] abstractions,

and described how they can be used to solve data intensive problems in the fields
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Figure 3.1: Three Examples of Abstractions
All-Pairs, Wavefront and Makeflow are examples of abstractions. All-Pairs

computes the Cartesian product of two sets A and B using a custom function F.
Wavefront computes a two-dimensional recurrence relation using boundary
conditions and a custom function F as an input. Makeflow takes an array of
dependencies, which could be visualized as a directed acyclic graph structured
workload, computes according to the workflow and produces a target file. Using

different techniques, each can be executed efficiently on multicore clusters.

of biometrics, bioinformatics, and data mining. Our implementations allow non-

experts to harness hundreds of processors on problems that run for hours or days

using the Condor [100] distributed batch system. In this chapter, we extend the

concept of abstractions to multicore computers and clusters of multicore computers.

We demonstrate that it is feasible to accurately model the performance of large scale

abstractions across a wide range of configurations, allowing for the rational selection

of appropriate resources.

3.1 Abstractions

An abstraction is a declarative framework that joins together sequential processes

and data structures into a regularly structured parallel graph. An abstraction en-

gine is a particular implementation that materializes that abstraction on a system,

whether it be a sequential computer, a multicore computer, or a distributed system.

Figure 3.1 shows three examples of abstractions: All-Pairs, Wavefront and Makeflow.
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All-Pairs( A[i], B[j], F(x,y) )

returns matrix M

where M[i,j] = F(A[i],B[j])

The All-Pairs abstraction computes the Cartesian product of two sets, generating a

matrix where each cell M[i,j] contains the output of the function F on objects A[i]

and B[j]. This sort of problem is found in many different fields. In bioinformatics,

one might compute All-Pairs on a set of gene sequences as the first step of building

a phylogenetic tree. In biometrics, one might compute All-Pairs to determine the

accuracy of a matching algorithm on a collection of faces. In data mining applica-

tions, one might compute All-Pairs on a set of documents to generate a graph of

relationships.

Wavefront( R[i,j], F(x,y,d) )

returns matrix R

where R[i,j] = F( R[i-1,j], R[i,j-1], R[i-1,j-1] )

The Wavefront abstraction computes a recurrence relationship in two dimensions.

Each cell in the output matrix is generated by a function F where the arguments

are the values in the cells immediately to the left, below, and diagonally left and

below. Once a value has been computed at position (1,1), then values at positions

(2,1) and (1,2) may be computed, and so forth, until the entire matrix is complete.

The problem can be generalized to an arbitrary number of dimensions. Wavefront

represents a number of simulation problems in economics and game theory, where the

initial states represent ending states of a game, and the recurrence is used to work

backwards in order to discover the effect of decisions at each state. Wavefront also

represents the problem of sequence alignment via dynamic programming in genomics.

Makeflow( R[n] )

where each rule R[i] is (input files, output files, command)

returns output files from all R[i]
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The Makeflow abstraction expresses any arbitrary directed acyclic graph (DAG).

Whereas All-Pairs and Wavefront are problems that can be decomposed into thou-

sands or millions of instances of the same function to be run with near-identical

requirements, a DAG workload may be structurally heterogeneous and consist of pro-

grams and files of highly variable runtime and size. Many such problems are found

in bioinformatics, where users chain together multiple independent tools to solve a

larger problem. Below, we will show Makeflow applied to a genomics problem.

On very small problems, these abstractions are easy to implement. For example,

a small All-Pairs can be achieved by just iterating over the output matrix. How-

ever, many users have very large examples of these problems, which are not easy to

implement. For example, a common All-Pairs problem in biometrics compares 4000

images of 1MB to each other using a function that runs for one second, requiring 185

CPU-days of sequential computation. A sample Wavefront problem in economics

requires evaluating a 500 by 500 matrix, where each function requires 7 seconds of

computation, requiring 22 CPU-days of sequential computation. To solve these prob-

lems in reasonable time, we must harness hundreds of CPUs. However, scaling up to

hundreds of CPUs forces us to confront these challenges:

• Data Bottlenecks. Often, I/O patterns that can be overlooked on one proces-
sor may be disastrous in a scalable system. One process loading one gigabyte
from a local disk will be measured in seconds. But, hundreds of processes load-
ing a gigabyte from a single disk over a shared network will encounter several
different kinds of contention that do not scale linearly. An abstraction must
take appropriate steps to carefully manage data transfer within the workload.

• Latency vs Concurrency. Dispatching sub-problems to a remote CPU can
have a significant cost in a large distributed system. To overcome this cost, the
system may increase the granularity of the sub-problems, but this decreases the
available concurrency. To tune the system appropriately, the implementation
must acquire knowledge of all the relevant factors.

• Fault Tolerance. The larger a system becomes, the higher the probability
the user will encounter hardware failures, network partitions, adverse policy
decisions, or unexpected slowdowns. To run robustly on hundreds of CPUs,
our model must accept failures as a normal operating condition.
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• Ease of Use. Most importantly, each of these problems must be addressed
without placing additional burden on the end user. The system must operate
robustly on problems ranging across several orders of magnitude by exploring,
measuring, and adapting without assistance from the end user.

Examples of abstractions beyond the three mentioned above include Bag-of-

Tasks [13, 26], Bulk Synchronous Parallel [22], and Map-Reduce [28]. None of these

models is a universal programming language, but each is capable of representing a cer-

tain class of computations very efficiently. In that sense, programming abstractions

are similar to the idea of systolic arrays [52], which are machines specialized for very

specific, highly parallel tasks. Abstractions like All-Pairs and Wavefront are obviously

less expensive than general purpose workflow languages such as DAGMan [100], Pega-

sus [29], Swift [107], and Dryad [49]. But, precisely because abstractions are regularly

structured and less expressive, it is more tractable to provide robust and predictable

implementations of large workloads. Once experience has been gained with specific

abstractions, future work may evaluate whether more general languages can apply

the same techniques.

3.2 Architecture

Figure 3.2 shows a general strategy for implementing abstractions on distributed

multicore systems. The user invokes the abstraction by passing the input data and

function to a distributed master. This process examines the size of the input data,

the runtime of the function, consults a resource catalog to determine the available

machines, and models the expected runtime of the workload in various configurations.

After choosing a parallelization strategy, the distributed master submits sub-problems

to the local batch system, which dispatches them to available CPUs. Each job consists

of amulticore master which examines the executing machine, chooses a parallelization

strategy, executes the sub-problem, and returns a partial result to the distributed

master. As results are returned, the distributed master may dispatch more jobs and
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Figure 3.2: Distributed Multicore Implementation
All-Pairs, Wavefront, and other abstractions can be executed on multicore clusters
with a hierarchical technique. The user first invokes the abstraction, stating the
input data sets and the desired function. The distributed master process measures
the inputs, models the system, and submits sub-jobs to the distributed system. Each
sub-job is executed by a multicore master, which dispatches functions, and returns
results to the distributed master, which collects them in final form for the user.

assembles the output into a compact final form.

For ease of use and implementation, both the distributed and multicore masters

are contained in a single executable and invoked in the same way. Both All-Pairs

and Wavefront are invoked by stating directories containing the input data and the

name of the executable that implements the function:

allpairs function.exe Adir Bdir

wavefront function.exe Rdir

Without arguments, the distributed master will automatically choose how to partition

the problem. When dispatching a sub-problem to a CPU, the distributed master

simply invokes the same executable with options to select multicore mode on a given

sub-problem, for example:

wavefront -M -X 15 -Y 20 -W 5 -H 5 function.exe Rdir

Of course, this assumes that the necessary files are available on the executing machine.

The distributed master is responsible for setting this up via direct file transfer, or

specification through the batch system. Note that this architecture allows for more
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than two levels of hierarchy – a global master could invoke distributed masters on

multiple clusters – but we have not explored this idea yet.

The user may specify the function in several different ways. The function is

usually a single executable program, in which case the input data is passed through

files named on the command line, and the output is written to the standard output.

This allows the end user to choose whatever programming language and environment

they are most comfortable with, or even use an existing commercial binary. For

example, the All-Pairs and Wavefront functions are invoked like this:

allpairs_func.exe Aitem Bitem > Output

wavefront_func.exe Xitem Yitem Ditem > Output

Invoking an external program might have unacceptable overhead if the execution

time is relatively short. To overcome this, the user may also compile the function

into a threaded shared library with interfaces like this:

void * allpairs_function(

const void *a, int alength,

const void *b, int blength );

void * wavefront_function(

const void *x, int xlength,

const void *y, int ylength,

const void *d, int dlength );

Regardless of how the code is provided, we use the term function in the logical sense:

a discrete, self-contained piece of code with no side effects. This property is critical

to achieving a robust, usable system. The distributed master relies on its knowledge

of the function inputs to provide the necessary data to each node. If the function

were to read or write unexpected data, the system would not function.
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As the results are returned from each multicore master, the distributed master

assembles them into a suitable external form. In the case of Wavefront, it is not

realistic to leave each output in a separate file (although the batch system may

deposit them that way), because the result would be millions of small files. Instead,

the distributed master stores the results in an external sparse matrix. This provides

efficient storage as well as checkpointing: after a crash, the master reads the matrix

and continues where it left off.

The distributed master does not depend on the features of any particular batch

system, apart from the ability to submit, track, and remove jobs. Our current imple-

mentation interfaces with both Condor [100] and Sun Grid Engine (SGE) [41], and

expanding to other systems is straightforward. The distributed master also interfaces

with a custom distributed system called Work Queue, which we will motivate and

describe later.

To use Makeflow, a user needs to create a Makeflow script that describes the

workflow of his workload. This language is very similar to traditional Make [34]:

each rule states a program to run, along with the input files needed and the output

files produced. Here is a very simple example:

part1 part2: input.data split.py

./split.py input.data

out1: part1 mysim.exe

./mysim.exe part1 >out1

out2: part2 mysim.exe

./mysim.exe part2 >out2

Like All-Pairs and Wavefront, Makeflow can run an entire workload on a local

multicore machine, or submit jobs to Condor, SGE, or Work Queue. However, it
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does not have a hierarchical implementation: only single jobs are dispatched to re-

mote machines. This is because graph partitioning is algorithmically complex, and

impractical for heterogeneous workloads where runtime prediction is unreliable. Put

simply, Makeflow has greater generality, but this comes at the cost of implementation

efficiency, as we will emphasize below.

3.3 Building Blocks

Our overall argument is that highly restricted abstractions are an effective way

of constructing very large problems that are easily composed, robustly executed,

and highly scalable. To evaluate this argument, we will begin by examining several

questions about each abstraction at the level of microbenchmarks, then evaluate the

system has a whole.

3.3.1 Threads and Processes

It is often assumed that multicore machines should be programmed via multi-

threaded libraries or compilers. Our technique instead employs processes, because

they are more easily adapted to distributed systems. How does this decision affect

performance at the level of a single machine?

As a starting point, we constructed simple benchmarks to measure the time to

dispatch a null task using various techniques. Each measurement is repeated one

thousand times, and the average is shown. (Unless otherwise noted, the benchmark

machine is a 1GHz dual core AMD Opteron model 1210 with 2GB RAM running

Linux 2.6.9.) Table 3.1 shows the results. pthread creates and joins a standard

POSIX thread on an empty function, fork creates and works for a process which

simply calls exit, exec forks and executes an external program, and popen and

system create new sub-processes invoked through the shell.
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TABLE 3.1

TIME TO DISPATCH A TASK

Method Time

pthread 6.3 µs

fork 253 µs

exec 830 µs

popen 2500+ µs

system 2500+ µs

It is no surprise that creating a thread is several orders of magnitude faster than

creating a process. However, it is not so obvious that popen and system are con-

siderably more expensive than exec, and often vary in cost from user to user. This

is because these methods invoke the user’s shell along with their complex startup

scripts, which can have unbounded execution time and create troubleshooting prob-

lems. If we are careful to avoid these methods, then executing an external program

can be made reasonably fast. Moreover, it is only necessary for the execution time to

dominate the invocation time: a task in an abstraction running for a second or more

is sufficient.

3.3.2 Concurrency and Data in All-Pairs

Of course, within a real program, we must weigh invocation time against more

complex issues such as synchronization, caching, and access to data. To explore

the boundaries of these issues, we studied the All-Pairs multicore master running

in sequential mode on a single machine, comparing 1MB randomly generated files.

A simple comparison function counts the number of bytes different in each object.

From a systems perspective, this is similar to a biometrics problem, and provides a
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Figure 3.3: Linear Method vs Blocked Method.
The linear method evaluates cells in the matrix line by line. The blocked method
evaluates cells block by block with a width chosen to fit in the file system buffer cache.

high ratio of data to computation. Any realistic comparison function would be more

CPU intensive, so these tests explore the worst case.

In this scenario, we vary several factors. First, we vary the invocation method of

the function: create a thread to run an internal function (thread) or create a process

to execute an external program (process). The author of a function is free to choose

their own I/O technique, so we also compare buffered I/O byte-by-byte (fgetc), block-

by-block (fread), and memory-mapped I/O (mmap). A naive implementation would

simply iterate over the output matrix in order, causing cache misses at all levels on

every access. A more effective method, as shown in Figure 3.3, is to choose a smaller

block of cells and iterate over those completely before proceeding to the next block.

The width of the block is referred to as the block size. (This technique is sufficient

for our purposes, but see Frigo et al [37] for more clever methods.)

Figure 3.4 shows the relative weight of all these issues. Each curve shows the

runtime of a 1000×10 comparison over various block sizes. The two slowest curves

are thread and process, both using fgetc. The two middle curves are process using

fread and mmap, and the fastest is thread with mmap. All curves show significant

slowdown when the block size exceeds physical memory.

Clearly, threads with mmap execute twice as fast as the next best configuration.
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Figure 3.4: Threads, Processes, and I/O Techniques.
The performance of a data intensive 1000×10 All-Pairs in sequential mode using
threads and processes with various I/O techniques. While threads provide the best
performance, processes are a reasonable method even on this worst case.

If the user is willing to write a thread-safe function for use with the abstraction, they

should do so. However, the use of processes is only twice as slow in this artificial worst

case and will not fare as poorly with a more CPU-intensive function. Moreover, the

appropriate use of virtual memory by the abstraction and the I/O technique chosen

by the function are much more significant factors than the difference between threads

and processes. We conclude that using processes to exploit parallelism is a reasonable

tradeoff if it improves the usability of the system.

We re-emphasize that each abstraction can accept either an external program or

a threaded internal function. So far, none of our users has chosen to use threads.

Next we consider how to carry out All-Pairs on a multicore machine. Although

there are many possible ways, we may consider two basic strategies. One is to generate

N contiguous sub-problems, and allow each core to run independently. The other

is to write an explicit multicore master that proceeds through the entire problem

coherently, dispatching individual functions to each core. Figure 3.5 compares both

of these against a simple sequential approach. As can be seen, the sub-problem

approach performs far worse, because it does not coordinate access to data, and

caches at all levels are quickly overwhelmed. Thus, we have shown it is necessary
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Figure 3.5: Multicore vs Sub-Problems.
The performance of an 1000×10 All-Pairs in sequential mode, in dual-core mode, and
as two independent sequential sub-problems, using various block sizes. This demon-
strates the importance of an explicit multicore strategy.

to have a deliberate multicore implementation, rather than treating each core as a

separate node.

3.3.3 Control Flow in Wavefront

As we have shown, the primary problem in efficient All-Pairs is managing data

access. However, in Wavefront the problem is almost entirely control flow. The first

task of the problem is sequential. Once completed, two tasks may run in parallel,

then three, and so forth. If there is any delay in dispatching or completing a task,

this will have a cascading effect on dependent adjacent tasks. We will consider two

control flow problems: dispatch latency and run-time variance.

Figure 3.6 models the effect of latency on a Wavefront problem. This simple

model assumes a 1000×1000 problem where each task takes one second to complete.

On the X axis, block size indicates the size of sub problem dispatched to a processor.

Each curve shows the runtime achieved for a system with dispatch latency ranging

from zero (e.g. a multicore machine) to 30 seconds (e.g. a wide area computing grid).

As block size increases, the sub-problem runtime increases relative to the dispatch

latency, but less parallelism is available because the distributed master must wait for
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Figure 3.6: The Effect of Latency on Wavefront
The modeled runtime of a 1000×1000 Wavefront where each function takes one second
to complete, with varying block size and dispatch latency. As dispatch time increases,
the system must increase block size to overcome the idle time.

an entire sub-problem to complete before dispatching its neighbors. The result is

that for very high dispatch times, a modest block size improves performance, but

cannot compete with a system that has lower dispatch latency. So, the key to the

problem is to minimize dispatch latency.

Although Wavefront can submit jobs to Condor and SGE batch systems directly,

the dispatch latency of these systems when idle is anywhere from ten to sixty seconds,

depending on the local configuration. For short-running functions, this will not result

in acceptable performance, even if we choose a large block size. (This is not an

implementation error in either system, rather it is a natural result of the need to

service many different users within complex policy constraints.)

To address this, we borrowed the idea of a fast dispatch execution system as in

Falkon [80]. We built a simple framework called Work Queue that uses lightweight

worker processes that can be submitted to a batch system. Each contacts the dis-

tributed master, and provides the ability to upload and execute files. This allows for

task dispatch times measured in milliseconds instead of seconds. Workers may be

added or removed from the system at any time, and the master will compensate by

assigning new tasks, or reassigning failed tasks.
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Figure 3.7: The Effect of Fast Abort on Wavefront
The startup behavior of a 500×500 Wavefront with and without Fast Abort. Without
Fast Abort, every delayed result impedes the increase in parallelism, which stabilizes
around 20. With Fast Abort, delays are avoided and parallelism increases steadily.

However, even if we solve the problem of fixed dispatch latency, we must still deal

with the unexpected delays that occur in distributed systems. When Work Queue

runs on a Condor pool, a running task may still be arbitrarily delayed in execution.

It may be evicted by system policy, stalled due to competition for local resources,

or simply caught on a very slow machine. To address these problems, the Work

Queue scheduler keeps statistics on the average execution time of successful jobs

and the success rate of individual workers. It makes assignments preferentially to

machines with the fastest history, and proactively aborts and re-assigns tasks that

have run longer than three standard deviations past the average. These techniques

are collectively called Fast Abort.

Figure 3.7 shows the impact of Fast Abort on starting up a 1000×1000 Wavefront

on 180 CPUs. Without Fast Abort, stuck jobs cause the workload to however around

twenty tasks running at once. With Fast Abort, the stragglers are systematically

resolved and the concurrency increases linearly until all CPUs are in use. Figure 3.8

shows this behavior from another perspective. The distributed master periodically

produces a bitmap showing the progress of the run. Colors indicate the state of

each cell: red is incomplete, green is running, and blue is complete. Due to the
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Figure 3.8: Asynchronous Progress in Wavefront
A progress display from a Wavefront problem. Each cell shows the current state
of a portion of the computation: the darkest gray in the lower left corner indicates
incomplete, the lighter gray in the upper right indicates complete, and the light cells
in between are currently running. The irregular progress is due to heterogeneity and
asynchrony in the system.

heterogeneity of the underlying machines, the wave proceeds irregularly. Although

an N×N problem should use N CPUs at maximum, this perfect diagonal is rarely

seen.

3.3.4 Greater Generality with Makeflow

Makeflow provides a different type of building block for large multicore workflows

with abstractions. Makeflow combines many functions together (instead of many

instances of the same function) to express more complex series of operations.

Makeflow uses a syntax very similar to traditional Make, but it differs in one

critical way: each rule of a Makeflow must exactly state all of the files consumed or

created by the rule. (In traditional Make, one can often omit files, or add dummy

rules as needed to affect the control flow.) Makeflow is more strict, but this allows

it to accurately generate batch jobs, exploit common patterns of work, and schedule

jobs to where their data is located. This allows Makeflow to run correctly on both
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Figure 3.9: Makeflow on Multicore and Cluster
The performance of a genomics application run through Makeflow, using 1-24 cores
on both a multicore machine and a cluster using Work Queue.

local multicore machines as well as a distributed system.

The Makeflow abstraction can be configured to use different numbers of cores.

Figure 3.9 shows the turnaround times varying the number of cores used with two

different options for executing a genomics workload on 1-24 cores. The top curve

(“cluster”) presents Makeflow using Work Queue, with workers submitted to re-

mote machines as Condor jobs. The bottom curve (“multicore”) executes all work

as Makeflow-controlled local processes, in which Makeflow automatically takes ad-

vantage of multiple cores on the submitting machine. Makeflow jobs running locally

outperform jobs tasked to remote workers and scale well up to the number of available

cores.

3.4 Performance Modeling

In a well-defined dedicated environment in which the distributed master knows

exactly which resources will be used, a model can partition work to the resources in

such a way as to optimize the workload [101]. This applies to multicore environments

as well – the distributed master could build multicore assumptions into the model
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to optimize a workload. However, this finely-tuned partitioning does not adapt well

to heterogeneous environments or resource unavailability. Previous work derived a

more realistic solution for modeling the turnaround time of an All-Pairs workload in

a cluster [66]. Is it possible to use the multicore version of the All-Pairs abstraction

transparently beneath the cluster abstraction?

If the abstraction is to use the multicore master transparently, then it must con-

tinue to exclude considerations of the number of cores per node from the model . If

the workload is benchmarked on a single-core system or with a single-threaded execu-

tor, then the model will choose appropriate resources to run the workload efficiently

assuming single-threaded operation. Adding multicore execution to this workload,

then, will only serve to make the batch jobs complete faster on the multicore re-

sources. It does not change the overall workload any more than having benchmarked

on a slow node would: the success of the model in avoiding disastrous cases is main-

tained, the faster resources (in this case multicore nodes) will account for a greater

portion of the batch jobs than their “fair share”, and any long-tail from slow nodes

would extend out at most to the same duration as without any multicore nodes.

So it is possible, but this is little solace if there is a clearly better solution for mod-

eling a distributed All-Pairs workload using multicore resources. Another option is to

integrate the multicore master (instead of the original single-threaded executor) into

the benchmarking process for the model. If the function runtime is benchmarked us-

ing the multicore master, then the function execution time (computed as the average

time per function over a small set of executions) will be comparable to the expected

execution of batch jobs on the same number of cores. This is a good approach for

submitting to homogeneous clusters of resources in which the same number of cores

are available for every batch job. In a heterogeneous environment, however, this only

serves to exacerbate the model’s assumption that the benchmark node reflects the

cluster’s resources. Whereas the original model conceded that individual resources
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might be perhaps a generation newer (faster) or older (slower) than the benchmark

node, the inclusion of multicore uncertainty into the benchmarking increases the po-

tential range of resource capabilities and thus the potential for long-tail effects in a

workload.

Another option would be to include a coefficient of the average number of cores

within the model. Because the model includes a component for the time to complete

a single batch job, an adjustment for the number of cores could be made by dividing

the batch job execution time in the model by this average. This retains the same

prerequisite measurements (plus the calculation of the average number of cores),

however it has several limitations. First, the pool of resources must be well-defined

so that the average number of cores may be determined; but because the model is

used to select the appropriate number of resources, the exact set of hosts is not known

a priori. Thus, the average number of cores available for each host is a pool average

rather than one specific to the actual resources used. Further, contention for resources

means that not all hosts will be utilized equally or predictably, which presents the

same problem in trying to include a factor of the number of cores in the turnaround

time model. This is especially problematic as we move beyond workstations with

at most a few cores: unavailability of a machine with dozens of cores significantly

changes the average number of cores of the available machines.

With that said, can we accurately model the performance of our abstractions?

Figure 3.10 shows the modeled performance of All-Pairs workloads of varying sizes

running on an 8-core machine and a 64-core cluster. Figure 3.11 shows the modeled

performance of Wavefront workloads running on a 32-core machine and a 180-core

cluster. In both cases, the multicore model is highly accurate, due to a lack of

competing users and other complications of distributed systems. Both models are

sufficiently accurate that we may use them to choose the appropriate implementation

at runtime based on the properties given to the abstraction. Figure 3.12 shows the
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Figure 3.10: Accuracy of the All-Pairs Model on Multicore and Cluster
The real and modeled performance of an All-Pairs benchmark of varying sizes on a
8-core machine (left) and an 64-core cluster (right).
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Figure 3.11: Accuracy of the Wavefront Model on Multicore and Cluster
The real and modeled performance of a Wavefront benchmark of varying sizes on a
32-core machine (left) and an 180-core cluster (right).

modeled performance of Makeflow workloads running on a 24-core machine and a 60-

core cluster. Figure 3.13 compares the multicore and cluster models for the previous

All-Pairs andWavefront examples, and demonstrates the actual performance achieved

when selecting the implementation at runtime.

3.5 Makeflow vs Specific Abstractions

With the Makeflow abstraction for arbitrary DAG workflows, could we choose

to use it as a general tool instead of implementations of the specific abstractions

mentioned above? In our experience, the answer is that we could, but in doing so
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Figure 3.12: Accuracy of the Makeflow Model on Multicore and Cluster
The real and modeled performance of a Makeflow benchmark of varying sizes on a
24-core machine(left) and a 60-core cluster(right).
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Figure 3.13: Selecting An Implementation Based on the Model
These graphs overlay the modeled multicore and cluster performance on problems of
various sizes for All-Pairs (left) and Wavefront (right). The dots indicate actual
performance for the selected problem size. As can be seen, the modeled performance
is not perfect, but it is sufficient to choose the right implementation.

we lose many of the problem-specific advantages given by the less general abstrac-

tions. We carry out All-Pairs on a 24-core machine using both the all-pairs multicore

abstraction and the Makeflow abstraction.

We vary the size of the workloads from creating a 10×10 matrix to creating a

1000×1000 matrix. Each matrix cell is computed by comparing two 20KB files. With

the Makeflow abstraction, each cell value depends on a comparison and the cell value

is stored in a file after it is computed. And we have to write an additional program,

which depends on all the cell value files, to extract all cell values from generated
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Figure 3.14: Solving All-Pairs with Makeflow and All-Pairs
This figure shows the time to complete an All-Pairs problem of various sizes using
the general Makeflow tool and the specific All-Pairs tool. The more general tool is
considerably more expensive, because it uses files for output storage, and is unable to
dispatch sub-problems to multicore processors.

files and put them into the target matrix. The running time of both abstractions

on different workloads are shown in Figure 3.14. It is easy to see that the All-Pairs

multicore abstraction scales almost linearly as the workload increases. However, the

Makeflow abstraction is several orders of magnitude slower at this problem, because

it uses files for output storage, and is unable to manage work in organized blocks.

The increased generality of Makeflow has a significant price, so we conclude that

there is a great benefit to retaining specific abstractions such as All-Pairs and Wave-

front for specialized problems.
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CHAPTER 4

DYNAMIC WORKLOADS

A dynamic workload is a workload whose computational structure is unknown

prior to execution. Because the workload structure is unknown, the abstraction

modeling method we used for static workloads is impossible to be applied. The

resource allocation problem on general dynamic workloads is difficult. The dynamic

capacity management method described in this chapter relies on the following three

assumptions that reduces the problem complexity to a solvable level: (a) applications

are composed of tasks that have a relatively stable computation-to-data ratio, (b)

task properties are not known in advance, and (c) there are more tasks than workers

available, so that there is an opportunity to measure and adjust over time. The

system will adapt to changes in computation-to-data ratio, as long as the task mix

is stable for a sufficient period for the system to adjust.

4.1 Architecture

This work is done in the context of the Work Queue [19] elastic application frame-

work as shown in Figure 4.1, but the lessons apply to any system where the provisions

of the computing resources must be right-sized to the applications. In this frame-

work, a master process represents a particular application, generating tasks with are

sent off to multiple workers. Any workload that runs as a Work Queue master is

automatically elastic as it can adapt to different computing resource availabilities and

progress through resource loss. The master advertises its location and other details
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to a catalog server, which makes it known to the worker pool, which is responsible

for setting up and maintaining an appropriate number of workers for the master.

A master program is constructed by creating a custom application and linking

it with the Work Queue master library. The library provides an API in multiple

languages, allowing the caller to define a new task, submit it to the queue, and

wait for a task to complete. Each task consists of an arbitrary command line to be

executed, along with the executables and files necessary to carry it out. In pseudo-

code a program written to the Work Queue API looks like this:
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while( not_done ) {

for( each_new_task ) {

task = work_queue_task_create( details );

// add more details to the task

work_queue_task_submit( task );

}

task = work_queue_task_wait( timeout );

if( task ) {

process_result(task);

work_queue_task_delete( task );

}

}

A standard worker program is common to all Work Queue applications. The

worker is a lightweight executable that can be deployed to any kind of computational

infrastructure and connects back to the desired master program. The master and

worker then work together to move the necessary files and executables to the worker,

and the run the task’s command line. Together the master and worker are robust to

a variety of network and system failures, so that when something goes wrong, a task

can be re-assigned to another worker.

In the most basic form, a number of workers can be started by hand and given the

exact address and port of a known master to work with. However, managing addresses

and ports becomes tiresome at large scale, so a catalog is used for discovery instead.

The master may optionally advertise its name, location, and other details to the

catalog server. When this is done, workers may be started by simply indicating the

logical name of the master – each worker queries the catalog for the location of the

desired master. The catalog is also the point of contact for a number of status tools

that can quickly list the running applications, number of workers, progress toward
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completion, etc.

For clarity, we will confine our discussion to the Work Queue software. However,

the principles are general and could easily apply to any system with multiple worker

nodes and the dynamic generation of work, including but not limited to Azure [47],

SAGA [58], Falkon [80], Swift [107], and Condor-MW [57], to name a few.

4.2 The Problem of Capacity

The framework this far – master, workers, and catalog – has been to construct a

variety of large scale scientific applications, including scalable genome assembly [68],

genome analysis tools [102], and advanced molecular dynamics ensembles [5]. As

mentioned in Chapter 3, Work Queue is also used as the driver underlying higher

level computing abstractions, such as All-Pairs, Wavefront, and Makeflow. Typical

applications manage thousands to millions of tasks running on hundreds to thousands

of workers.

However, a common problem across these applications is that managing the set

of workers becomes a burden on the end user as scale increases. Submitting a large

number of workers to a batch system or to a public cloud may take significant time

and be interrupted by network failures. System outages or other problems may cause

workers to be returned to the user, as if complete. Further, the end user must judge

the proper number of workers that the application could use, and manage them them

manually at runtime. In our experience, the necessary information was completely

opaque to the end user, so that often 1000 workers would be running when only 10

were necessary, or vice versa.

To address this problem, we introduce a new component into the framework. The

worker pool serves to deploy and maintain the proper number of workers needed on

a resource for the benefit of the elastic application. The user starts the single process

once with basic instructions (e.g. Don’t run more than 500 workers or spend more
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Figure 4.3: Performance vs Parallel Efficiency

than $100.) and then is relieved of further details. The worker pool is built with

drivers that allow it to submit and remove jobs from traditional batch systems like

Condor and SGE as well as public clouds like Amazon EC2 and Microsoft Azure[84].

This chapter focuses on the key design question of the worker pool, which is simply

this:

How many workers should be running at once?

Put simply, if too few workers are run at once, the master will be left underutilized,

missing on opportunities to execute tasks. If too many workers are run at once, the

master will not have enough bandwidth (or other resources) to keep them busy, and

workers will be left idle, wasting those allocated resources and possibly decreasing

overall performance.

To demonstrate this problem, we constructed a simple benchmark application,

generating 1000 uniform tasks where each task uses 1 MB of input data, takes 5

seconds to execute, and generates 1 MB of output data, and then ran it on a varying

number of dedicated workers from 1 to 120. Figure 4.3 shows the turnaround time

and parallel efficiency of running the benchmark application with a varying number

of workers. Equation 4.1 shows how the estimated parallel efficiency is calculated at

runtime. Ti is the execution time of the ith task and N is the number of tasks that
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are already completed. Equation 4.2 shows how the observed parallel efficiency is

computed. In this equation, Tseq is the turnaround time of executing the application

tasks sequentially. In both equations, Twall−clock is the turnaround time of execut-

ing the application tasks in parallel. As can be seen, the application turnaround

time first decreases as more workers are provided. The parallel efficiency, however,

keeps decreasing because more workers adds more communication overheads. When

the number of workers reaches 20, adding more workers no longer improves the per-

formance because the master is unable to keep all the workers always doing useful

work.

calculated = (

N∑

i=1

Ti)/(N ∗ Twall−clock) (4.1)

observed = Tseq/(N ∗ Twall−clock) (4.2)

For the application in Figure 4.3, 20 is close to the optimal number of workers to

provide if the goal is to maximize the performance. When the number of workers

are less than 20, the master experiences idle times as it would spend time waiting

for tasks to finish, which means that the master has additional resource to take on

more workers and reduce the turnaround time through increased parallelism. When

the workers number is over 20, while the master’s idle times are greatly reduced, the

workers start to experience idle periods. During a worker’s life cycle, there are several

stages in which it could be idle – not doing useful work, such as waiting for the master

to accept its connection, waiting for a new task from the master, or waiting for the

master to receive its computing results. When a master is too busy to handle all the

workers in time, such idle times emerge and lead to resource waste.

This is all easy enough to state on paper, but in a production setting, it is very

challenging to determine whether an application is running efficiently. Moreover, the

user who wishes to accomplish real work has no interest in running the application

many times to determine the optimal configuration – it is much more important to
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TABLE 4.1

CAPACITY IN VARIOUS SYSTEMS – EXPERIMENT SETUP

Master Location Worker Location

A Campus Workstation Campus Condor

B Campus SGE Head Node Campus SGE

C Campus Workstation FutureGrid

D FutureGrid Head Node FutureGrid

E Campus Workstation Amazon EC2

F Amazon EC2 Amazon EC2
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Figure 4.4: Capacity in Various Systems – Results

make a good choice the first time. Further, the scale achievable may vary considerably

as the same application is moved between systems.

Figure 4.4 demonstrates this by showing the optimal number of workers for the

same benchmark application moved between multiple computing environments as

shown in Table 4.1: (A) Master on a workstation, workers on a campus Condor pool.

(B) Master and workers on a dedicated campus cluster. (C) Master on a workstation,

workers on FutureGrid. (D) Master and workers on FutureGrid. (E) Master on a
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workstation, workers on Amazon EC2. (F) Master and workers on Amazon EC2.

As can be seen, the optimal number of workers varies from 9 to 167, depending on

the bandwidth available to the master. Thus, an ideal resource management system

must be flexible such that the amount of resources for a workload is determined

dynamically according to the runtime environment.

4.3 Measuring Capacity

We define the master’s capacity as the maximum number of workers whose average

I/O bandwidth needs add up to the available I/O bandwidth at the master. The

optimal numbers of workers we show in Figure 4.3 and 4.4 are the master capacities.

Since our goal is to avoid wasting computing resources, we want the number of workers

provided to a master to be no greater than the master’s capacity. As stated earlier,

users have no interests in running an application multiple times to determine the

capacity for a given setting. Thus, we introduce a method to dynamically estimate

master capacity at application runtime.

4.3.1 A Simple Equation

We consider applications that contain independent tasks of similar sizes. That is,

for each task, the sizes of its input and output data, as well as the task execution time

are similar its peers. Many bioinformatics and biometrics applications mainly contain

tasks of similar sizes. Thus, such simplification is of practical value. In this simplified

model, the number of sufficient workers to keep a master busy equals the number of

tasks that the master can dispatch before the first handled task is complete.

A simple equation to estimate a master’s capacity is shown in equation 4.3. In

this equation, Ttran is the time to transfer a task, which includes the transfer time

of both the input and output data. Texe is the time to execute a task on a worker.

Equation 4.3 shows that a master’s capacity is dominated by the value of Texe/Ttran,
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which will be referred to as the computation/data ratio later in this paper. The

intuition behind the capacity estimation is that a masters capacity is approximately

the very number of workers that reduces the master idle time to the minimal level.

Of course, a master can never be 100% busy due to queueing effects. But when the

amount of workers provided is equal to capacity, the master will be just busy enough

sending out tasks. Note that the capacity value could be less than 1, in which case

there is no advantage to run on remote workers.

capacity = Texe/Ttran (4.3)

Equation 4.3 makes several assumptions that are unlikely to be true in a real dis-

tributed environment, namely that the network bandwidths between the master and

different workers are the same, and that each worker spends the same amount of time

to execute the tasks of the same size. Thus, we can not rely on a single task’s data

transfer time and execution time to calculate the master’s capacity. To incorporate

the heterogeneity of distributed systems into the capacity calculation, we replace the

items in equation 4.3 with their corresponding average values and get equation 4.4.

capacity = Tavg exe/Tavg tran (4.4)

4.3.2 Sample Selection

An implicit parameter of equation 4.4 is the task samples on which the averages

are computed. To make more accurate estimates on the capacity, the selected task

samples should reflect the up-to-date capacity of the master. As mentioned earlier, a

master’s capacity is dominated by the computation/data ratio of the tasks. If the this

ratio does not change throughout the execution, choosing the entire set of already

finished tasks as the sample is desirable because having the largest possible sample
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size best offsets the effects of outliers such as a extremely slow worker.

However, there are cases where the computation/data ratio may change over the

course of an execution. For example, in the Work Queue framework, the workers

are able to cache input files. Whenever a task is dispatched to a worker, any of its

input data that is already cached on the worker will not be transferred. To give an

example of the computation/data ratio’s changing effect, we consider an application

with tasks that all share the same input data. At the beginning of the execution, no

input data is cached on any workers, so the master has to transfer the shared input

file to every worker. If the number of tasks is large enough, eventually all the workers

would have the shared input file cached on them. Further tasks would then have less

input data to transfer, which changes the computation/data ratio.

Another example would be applications that contain different types of tasks. Con-

sider a slightly more complex application that contains two sequential steps where

each step contains tasks of the same type, that is, the computation/data ratios of

the tasks are the same. The computation/data ratios in the two steps, however,

are different. Assume that the number of tasks in both steps are large enough, the

master’s capacity at the beginning when all step-one tasks are being executed will be

different from that when step-two tasks occupy the workers.

In either case, the entire set of finished tasks might contain tasks that do not

reflect the up-to-date mater’s capacity. Computing averages on these tasks might

lead to greater inaccuracy. Thus, we limit the task samples to the most recently

finished N tasks where N is the number of busy workers. Although tasks of different

computation/data ratios may be executed at the same time, as long as the number

of the same type tasks is large enough, eventually the workers will be filled with

the same type tasks and the estimated capacity will move toward the mater’s actual

capacity.
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Figure 4.5: Capacity without Think Time

4.3.3 Final Equation

When we first tried using equation 4.4 to estimate the master’s capacity, we

observed some discrepancies between the estimated master’s capacity and the actual

master’s capacity.

To obtain a close estimate of a master’s actual capacity, we execute the same

application multiple times with different numbers of workers. When the turnaround

time does not improve as the number of workers increases, we record the number of

workers at that point as the actual master’s capacity for that application. Figure 4.5

shows the results of running a same benchmark application with different amount of

workers. The synthetic application contains 800 independent tasks where each task

has 5 MB input data, 10 seconds execution time, and generates 5 MB output data.

The master estimates its capacity whenever a task finishes. The estimated capacity

shown in Figure 4.5 is the dominating capacity value among all the capacity estimates

computed during a single execution.

We then discovered that the actual capacity of the application is around 40 as

the performance no longer improves after the number of workers goes beyond 40.

However, the estimated capacities of the application are around 60 regardless of

the number of workers provided. The reason for the deviation in the estimated
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capacity was the master spending extra time communicating with the upper-level

application. When a task finishes, the master returns the task result to the upper-

level application so that the upper-level application can take appropriate actions

according to the task result. During this communication, the master can not serve

any workers which may increase the idle times on the workers. The time that a

master spends in communicating with the upper-level application is referred to as

think time.

capacity = Tavg exe/(Tavg tran + Tavg think) (4.5)

After incorporating the think time–Tavg think into the capacity estimation leads to

equation 4.5. The new estimated capacities of the same application as we have

shown in Figure 4.5 became mostly around 40, which is more accurate compared to

the previous estimates of around 60. Further experiments with different numbers of

workers and types of tasks have also yielded improved accuracy on capacity estimates.

When more than the capacity amount of workers are provided, the master be-

comes overloaded and greater resource waste emerge at no performance benefits. In

Figure 4.3, the capacity curve shows the capacity estimates at the end of each en-

tire run. No matter how many workers are provided to the master, the

estimated capacity (18) is close to the optimal number of workers that

achieves the maximum performance.

4.3.4 Dynamic Behaviors

The capacity estimates we have shown in Figure 4.3 are static estimates obtained

at the end of the entire runs. In this subsection, we show two extreme cases of

dynamic behaviors in capacity estimation that are worth observing: settle time and

cache bounce.

Figure 4.6 shows the settle time behavior in dynamic capacity estimates when
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Figure 4.6: Settle Time on an Overloaded Master

80 workers are provided to a benchmark application of 600 independent, uniform

tasks. Each task in this workload has unique 5 MB of input, takes 10 seconds to

execute, and returns 5MB of output. The estimated capacity peaks (around 70) at

the beginning of the execution because the tasks execution statistics are only available

from the first few incidental faster workers. As more workers join the master, that is

the sample size for calculating the capacity becomes larger, the estimated capacity

drops down and become stable at around 40 throughout the rest of the execution.

We have repeated the same experiment multiple times only varying the amount of

workers, and we have observed that adding more workers beyond 40 does little to

none improvement to the application turnaround time. We refer to this initial period

when the capacity estimates are unstable and inaccurate as the settle time.

Figure 4.7 shows the cache bounce behavior in a different workload of 500 inde-

pendent, uniform tasks. Unlike the workload shown in Figure 4.6, all the tasks in this

workload share the same 1 GB of input. Each task takes 5 seconds to execute and

generates 1 MB of output. Initially, only 1 worker is provided to the master. The

first task transfer involves the transfer of the 1 GB input. Because the worker is able

to cache input data, later task transfers incurs no input transfer, which changes the

C/C ratio of the tasks. Because we configured the low-bound for sample tasks size to
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Figure 4.8: Settle Time and Cache Bounce in a Shared-Input Application

be 10, the first task’s execution statistics stayed as an outlier in capacity estimation

until the 11th task is returned. 10 more workers are added to the master when the

estimate capacities become relatively stable. Because the new workers had to repeat

the 1 GB input transfer, the capacity declines first and then returns to the previous

level as more workers have the shared-input data cached. We refer to the resulted

U-shaped capacity curve as the cache bounce.

Figure 4.8 shows the combined effects of settle time and cache bounce in a bench-

mark application that contains a total of 600 tasks. All the tasks share the same

50 MB input data. Each task takes 10 seconds to execute and generates 5 MB of

output. The estimated capacity starts out relatively low (quickly settled at around

20) because every task transfer includes the transfer of the shared 50 MB of input. As
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the workers begin to have that input data cached on themselves, input data transfer

time is shortened and the capacity estimate starts to increase. The cache bounces can

be seen at the 40 and 80 second points. After the bounces, the estimated capacity

becomes stable at around 60. Because we take task samples only from the most re-

cently finished tasks, the estimated capacity would eventually become in accordance

with the true computation/data ratio of the tasks being executed as long as there

are enough tasks for the estimation to adjust to.

4.4 Worker Distribution

The capacity estimation allows individual masters to report their introspects on

how many workers they need. The worker pool utilize these estimates, as well as

other metrics of the master’s status, to allocate a proper amount of workers to the

masters at runtime.

4.4.1 Master Advertisement

A master, when runs in the catalog mode, advertises its status information to a

catalog server periodically. The following list shows some of the items that are sent

to the catalog server from a master:

• hostname – the hostname of the machine that the master is running on.

• port – the port number that the master is listening on for worker connections.

• project – the name of the project that this master represents.

• tasks waiting – the number of tasks currently waiting in the master queue.

• tasks running – the number of tasks running on the workers.

• total workers – the number of connected workers.

• capacity – the estimated capacity of this master.

• workers by pool – the number of workers this master gets from each worker
pool.
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The ”project” field allows a worker to identify a master by a name string and

the ”hostname” and ”port” fields tells the end point that a worker should connect

to. The ”tasks waiting”, ”tasks running”, ”total workers”, and ”capacity” fields help

the worker pool to make proper worker distribution decisions and are also served for

display purposes (the user can query the status of their masters).

The ”workers by pool” field is useful when a master is served by multiple worker

pools and non-pool-controlled workers. With this field, a worker pool knows exactly

how many workers a master has received from itself. This prevents a worker pool

from allocating too many workers to a master when a part of the master’s worker

needs has been satisfied by other worker providers. For example, some of a master’s

workers may come from the worker submit utilities provided by Work Queue, such as

condor submit workers and sge submit workers, some other workers may come from

individually started worker processes (by running the worker program directly), and

some other workers may come from other worker pools.

An example of a ”workers by pool” field is as follows:

workers_by_pool: ws1.nd.edu-100:300,ws2.nd.edu-101:500,unmanaged:50

4.4.2 Basic Distribution Decision

The goal of the worker distribution decision is to provide each master with as

many workers as they need without violating the worker pool policy. The decision

specifies the number of workers this worker pool would like to provide to each master.

The following line is an example of a worker distribution decision made based on the

previous worker pool policy example:

distribution: proj1:500,proj2-A:500,proj2-B:1000

For the simplicity of discussion, we refer to a master with its project name in the rest

of the paper. The above distribution decision line states that the worker pool should
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provide 500 workers to proj1, 500 workers to proj2-A, and 1000 workers to proj2-B.

Note that any of the project name appeared in the decision line can be matched to

a project name regular expression listed in the worker pool policy.

The number of workers that a worker pool would decide to provide to a master

is derived from two pieces of information: the user defined policy and every matched

master’s runtime status. The decision making process starts with calculating the

maximum number of workers each master would need from it by using equation

4.6. In this equation, Wmax needed represents the maximum number of workers that

this master would need from this worker pool. Wstill needed is the extra number of

workers the master needs and Wreceived is the number of workers the master has

already received from the worker pool that is making this decision. The value of

Wreceived can be directly extracted from the workers by pool field in the master’s

status advertisement. The Wstill need, however, involves more complicated calculation

on multiple fields in the master’s status.

Wmax needed = Wstill needed +Wreceived (4.6)

When a master’s capacity is not reported, the extra number of workers this master

still needs (Wstill needed) can be calculated with equation 4.7. In this equation, Twaiting

is the number of waiting tasks on the master and this number represents the maximum

possible number of more workers that the master would need because a single task

is the minimal task scheduling unit.

Wstill needed = Twaiting (4.7)

When the master capacity is reported, because a master does not need more workers

than its own capacity, Wstill needed can be computed using equation 4.8. In this equa-

tion, capacity is the master’s reported capacity and Wconnected is the number of work-
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ers that the master has already received, regardless the source. capacity −Wconnected

is the extra number of workers that the master needs to fill its capacity. The MIN

function is used because Twaiting might be less than the value of capacity−Wconnected

during the execution (e.g. at the end of the master’s execution), in which case adding

more workers than Twaiting would definitely result in resource waste. Also note that

Wstill needed is never less than zero. This guarantees that the decision on a master will

not be reduced solely due to the decline in its capacity, which helps prevent system

oscillation as will be discussed in section 4.6.

Wstill needed = min(max(0, capacity −Wconnected), Twaiting) (4.8)

Once the Wmax needed is determined for a master, the worker pool compares this value

with the master’s Wdefault max value to determine whether the Wmax needed value can

be used as the final decision for this master. Before proceeding to the final decision

making process, we illustrate how the Wdefault max value is computed for each master.

The Wdefault max value of a master represents the default maximum number of

workers that the worker policy allows to provide to this master. It can be calcu-

lated using equation 4.9. Wdefault max in policy is the value on the right side of an

assignment whose left side (a regular expression) matches the master’s project name.

Nmatched masters is the total number of masters that match the assignment’s project

name regular expression. And Rscale can be computed from equation 4.10 where

Wtotal max corresponds to the max worker field in the worker pool policy. We use

the previous worker pool policy as an example to illustrate how the Wdefault max is

computed for assignment proj2.*=1500. With the given policy, the Rscale value is 1,

which is result of (500 + 1500) / 2000. If there are three masters – proj2-A, proj2-B,

and proj2-C. Then for any of these masters, the corresponding Wdefault max value
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would be 500, which is the result of 1500 divided by 3.

Wdefault max =
Rscale ∗Wdefault max in policy

Nmatchedmasters

(4.9)

Rscale =
Wtotal max∑

Wdefault max in policy

(4.10)

As can be inferred, the relation between the Wdefault max values for each master and

the policy defined max workers value can be summarized in equation 4.11. Because

of this auto-scaling property, the user is free to assign any number to the default

maximum worker fields in the policy and does not need to guarantee that the sum of

the assigned numbers equates the value of the max workers field.

Wtotal max =
∑

Wdefault max (4.11)

Now that the Wmax needed and the Wdefault max values are obtained for each master, we

continue to the final decision making process. For any master, if its Wmax needed value

is less than its Wdefault max value, then the Wmax needed becomes the final decision for

this master. If not, which means this master can take advantage of more workers

than its Wdefault max, then the worker pool may give more workers than this master’s

Wdefault max if some other masters need less than their own Wdefault max values.

The previous process calculates a potential decision (Wmax needed) for every matched

masters, and some of those decisions can be already determined as final. We refer to

those masters whose decisions are not final as hungry masters and the other masters

as full masters. The goal of the remaining process is to finalize the decisions for those

hungry masters.

The remaining process runs in a loop until the decisions for all the masters are

finalized. In each iteration, the maximum number of workers needed by all the

hungry workers is computed with equation 4.12 and the number of undecided workers
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is computed with equation 4.13. In equation 4.13, Wdecided is the sum of decisions

of those full masters. If Wtotal max needed is less than Wundecided, which means the

worker pool is able to satisfy all the remaining hungry masters’ needs, then for each

remaining hungry master, set its final decision to its Wmax needed and mark it as a full

master.

Wtotal max needed =
∑

hungry

Wmax needed (4.12)

Wundecided = Wtotal max −Wdecided (4.13)

If Wtotal max needed is greater than Wundecided, then a potential decision for each hungry

master with equation 4.14. Rweight represents the general proportion of workers that

the user wishes to allocate for this master as defined in the policy, which can be

computed with equation 4.15. If a master’s potential decision is greater than its

Wmax needed value, then the Wmax needed is used as the final decision for this master. If

none of the master’s potential decision is greater than its corresponding Wmax needed

in this iteration, then all the remaining hungry masters are marked as full masters

and their final decisions are set to their Wpotential decison.

Wpotential decision = Wundecide ∗Rweight (4.14)

Rweight =
Wdefault max∑

hungry Wdefault max

(4.15)

Now we examine a concrete example of what distribution decision will be made in a

certain situation to consolidate the understanding of the calculations. Let the name

of the worker pool be ws1.nd.edu-100. The worker pool policy is the same as in the

previous examples, which is:

max_workers: 2000

distribution: proj1=500, proj2.*=1500
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Assume there are three masters: proj1, proj2-A, and proj2-B. The masters’ status

that is relevant to the worker distribution decision is listed as below:

name: proj1

tasks_waiting: 2000

total_workers: 200

capacity: 1100

workers_by_pool: ws1.nd.edu-100:100,unmanaged:100

name: proj2-A

tasks_waiting: 1000

total_workers: 0

capacity: 0

workers_by_pool: N/A

name: proj2-B

tasks_waiting: 300

total_workers: 100

capacity: 700

workers_by_pool: ws2.nd.edu-101:100

First, the Wmax needed is calculated for each master, and the results are 1000 for

proj1, 1000 for proj2-A, and 200 for proj2-B. For proj1, the master capacity is 1100,

Wconnected is 200, Wstill needed is 900 (1100 - 200). And because the Wreceived (from

worker pool ws1.nd.edu-100) value is 100, the Wmax needed is 1000, which is the result

of 900 + 100. For proj2-A, since the capacity is not reported and no other workers

are connected to the master, the Wmax needed value equals its Wtasks waiting value. For

proj2-B, because there are only 300 tasks left and one other worker pool has already

provided 100 workers to this master, the Wmax needed is the value of 300 less 100.
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For Wdefault max values, proj1’s is 500, proj2-A’s is 750, and proj2-B is also

750. Note that the Rscale value in this example is 1, which is the result of (500

+ 1500)/2000. Thus the Wdefault max for the proj2.* masters is derived from 1500

divided by 2 (the number of matched masters). For proj2-B, because its Wmax needed

is less than 750, 100 becomes the final decision for proj2-B. The decisions for proj1

and proj2-A, however, are not finalized in yet because they can use more workers

than their Wdefault max.

Then the worker pool enters the iterative process to finalize the decisions for the

remaining two hungry masters. The Wtotal max needed is the sum of the two hungry

masters’ Wmax needed, which is 2000. The Wundecided is 1800 because only 200 work-

ers are in the final decision and the worker pool can allocate at most 2000 workers.

Because Wtotal max needed is greater than Wundecided, the worker pool computes a po-

tential decision, using equation 4.14, for each master based on their weights (Rweight)

as defined in the worker pool policy, and the results are:

proj1: Wpotential decision=720, Wmax needed=1000

proj2-A: Wpotential decision=1080, Wmax needed=1000

As can be seen, proj2-A’s Wpotential decison is greater than its Wmax needed, which

means the worker pool could provide 1080 workers to proj2-A based on the user de-

fined policy but the master does not need that many. Thus 1000 becomes the final

decision for proj2-A and proj2-A is marked as a full master. This ends the current

iteration and the worker pool proceeds to the next iteration. The Wundecided now be-

comes 800 because 200 + 1000 workers has already been decided, and Wtotal max needed

becomes 1000, which is the Wmax needed of the only left master – proj1. This time,

Wtotal max needed is still greater than Wundecided, Thus, a new potential decision com-

puter is for proj1 and the result is 800. Note that Rweight value for proj1 has been
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changed to 1. The new potential decision made in this iteration with the correspond-

ing Wmax needed value are listed below:

proj1: Wpotential decision=800, Wmax needed=1000

Since the Wmax needed for proj1 is still 1000, none of the hungry master’s potential

decision is greater than its corresponding Wmax needed. Thus the worker pool mark

proj1 as full masters and 800 (theWpotential decision of proj1) becomes the final decision

for proj1. At this point, no hungry master exists and the decision making process

ends. A new distribution decision needs to be sent to the catalog server so that the

relevant masters and workers can obtain it. The decision update to the catalog server

is the name-value pair format. The following fields would be sent to the catalog server

as in the :

name: ws1.nd.edu-100

decision: proj1:800, proj2-A:1000, proj2-B:200

The name field contains a unique name for the worker pool, which consists of the

machine’s hostname and the worker pool process’s process id. The decision field is

a string that includes the decision for every matched master. The worker distribu-

tion decision affects the behavior of the participating masters and workers, the next

section introduce how these components worker together to enforce a certain worker

distribution.

4.4.3 Worker Pool Policy

A worker pool manages the worker resources on behalf of the user. By starting

a worker pool, the user authorize the worker pool to request resources from the

underlying resource management system with his or her credentials and run workers

the allocated resources. Because the users own the requested resources, the users
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can define rules on how the worker pool should manage their resources, such as the

maximum amount of workers that the worker pool is allowed to request and the

number of workers should be assigned to each of user’s applications. The collection

of these user defined rules forms the worker pool policy.

The worker pool policy is specified in the form of name-value pairs in a file. The

location of the policy file needs to be specified when starting a worker pool. It is also

possible for a user to modify the policy file while a worker pool is running. A worker

pool can be instructed to adopt an updated worker pool policy file at runtime. The

following list shows the basic and required fields in a worker pool policy file:

• max workers: the maximum number of workers that the worker pool can allo-
cate.

• distribution: a list of projects and the default maximum amount of workers
that can be assigned to each of them.

The max workers field limits the maximum amount of resources that the worker

pool can request for. At any time, the number of workers that the worker pool

is maintaining should be no more the value of max workers. We illustrate the

distribution field with the following fragment from a sample worker pool policy file:

max_workers: 2000

distribution: proj1=500, proj2.*=1500

The distribution field contains a series of assignments separated by commas. In each

assignment, the left side of the assignment sign is a regular expression for project

name matching and the right side is the default maximum number of workers that

can be assigned to the matched projects. Assignment proj1 = 500 defines that the

master of proj1 can get at most 500 workers from the pool by default. Assignment

proj2.∗ = 1500 defines that, for all the masters whose project name matches the

regular expression proj2.∗ (e.g. proj2-A, proj2-B), the sum of workers that they can

receive from the worker pool should be no greater than 1500 by default.
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The default maximum worker limit for a master is not an absolute upper-limit.

The actual number of workers received by a master could exceed the predefined de-

fault maximum under certain circumstances. However, the default maximum worker

limits do imply the different proportions of workers that the user wishes to distribute

to different projects. In the above policy excerpt, when 2000 workers are allocated

(this happens when all the masters together needs more than 2000 workers), the user

would want 25% of them goes to the proj1 master and the remaining 75% goes to

the masters whose project names match the regular expression proj2.∗.

The distribution field is the basis for providing fairness (of resource provisioning)

among multiple projects when the resources are limited compared to the needs. When

the total amount of workers needed by all the masters are less than the value of

max workers, the worker pool can simply satisfy every master’s needs. But in the

reverse case, the worker pool complies with the user desired proportion for each

master based on the distribution field. Note that a particular master’s worker needs

might be less than the user’s allowed proportion. In this case, the extra amount of

workers not needed by that master can be assigned to other masters that needs more

than their allowed proportions.

The following list shows the optional fields that can be defined in the worker pool

policy to further constrain the behavior the worker pool.

• max change (per minute): maximum decision change per minute.

• default capacity: assume a default capacity for a master when its capacity is
unknown.

• billing cycle: the time period that each resource unit is billed upon.

After a pool decision is made, the worker pool knows how many workers it should

maintain, which is the sum of workers that it has decided to assign to each master.

We refer to this sum as the pool decision. When the max change field is specified,

that change speed of the pool decision would be no greater than the value of the
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max change field. When the default capacity field is specified, the worker pool

would use the value of default capacity as the capacity for those masters that have

not reported their capacities yet.

The billing cycle field is designed to accommodate the billing model of the com-

mercial clouds where computing resources are charged per time period. For example,

the Amazon EC2 platform charges their resource usage based on a one-hour bound-

ary. By default, if a worker has not been able to find any masters to serve within a

certain period of time, it will time out and terminate itself. But if the billing cycle

option is specified, the worker might not terminate itself after the normal timeout

period as long as there is time left until the next billing boundary. For example,

assuming the default timeout for a worker is 2 minutes and the billing cycle is 20

minutes, if a worker has worked for a master for 5 minutes and has no more work to

do, normally, the worker would automatically terminate itself at the 7 minute point.

But with the billing cycle specified, the worker would keep finding masters to serve

until it is close to the 20 minute point.

4.4.4 Policy Adjusted Distribution Decision

In this subsection, we first show how the pool decision is made with different

policies. Then introduce decision enforcement mechanism in the context of our elastic

application framework, which involves the coordinations among masters, workers, and

worker pools through a catalog server. Finally, we show the evaluations of the worker

pool resource management performance with different predefined policies. For each

policy, we show the worker pool performance on different patterns of workloads.

The goal of the worker distribution decision is to provide each master with as

many workers as they need without violating the worker pool policy. The decision

specifies the number of workers this worker pool would like to provide to each master.

It is derived from two pieces of information: the worker pool policy and every matched
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master’s runtime status. We refer to the total number of workers that a worker pool

decides to maintain as a decision. Now we look at the general criteria that the worker

pool use to make a decision and how we can combine them to form distinct policies.

The distinct policies are the basis for evaluating the effects of different criteria on the

resource allocation performance.

The most basic decision is the sum of the remaining tasks, as shown in equation

4.16. In this equation, Twaiting is the total number of tasks that are waiting to be

executed and Trunning is the total number of tasks that are currently being executed.

The sum of Twaiting and Trunning represents the total number of tasks that have been

submitted but have not run to completion. Because the goal is to complete all the

unfinished tasks and each task can only be run on one worker at a time, providing

more workers than the sum is obviously unnecessary.

D1 = Twaiting + Trunning (4.16)

To avoid allocating too many resources too quickly, we can limit the decision change

speed as shown in equation 4.17. Dprevious is the value of the previously made decision.

And ∆ is the production of the elapsed time since the previous decision was made and

the value of the max change field in the policy. Limiting the decision change speed

results in a more conservative worker allocation behavior. This is especially useful

when newly started masters have not been able to report their capacities yet (the

capacity estimation requires a certain number of tasks being completed). If newly

started master’s actual capacity is less than its unfinished tasks, a policy without

limiting the decision change might make the worker pool allocate more workers to a

master than it needed, which would result in resource waste as the master can not

use them efficiently.

D2 = min(D1, Dprevious +∆) (4.17)
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To respect the number of workers that the master can consume efficiently, the decision

should be no greater than the master’s reported capacity, as shown in equation 4.18.

Here C stands for the reported master’s capacity. If a master has not reported

its capacity, ∞ would be used as the value of C. As described in section 4.3, the

reported capacity represents the master’s estimate of how many workers it can handle

efficiently. Adding more workers to a master beyond its capacity would not result

in performance gain. By taking the reported capacity into consideration, the worker

pool can avoid the allocation of those workers that do not bring in benefits.

D3 = min(D1, C), C = ∞ if unknown (4.18)

With decision D3, the sum of Twaiting and Trunning would dominate the decision when

the capacity has not been reported. This could be undesirable because the worker

pool would allocate as many workers to match the sum but the sum could be actually

much greater than the capacity. One approach to reduce the startup waste is to assign

a default capacity value to the masters that have not reported their capacities. As

shown in equation 4.19, C0, which is the value of the default capacity field in the

policy, would be used as the default capacity for those masters that do not know

their capacities yet.

D4 = min(D1, C), C = C0 if unknown (4.19)

The max change option can help reduce the startup waste as well because it pre-

vents the worker pool from suddenly allocating too many workers when new work-

loads join with many unfinished tasks. To observe the startup waste reduction effect

of the max change option when capacity consideration is turned on, we add the

max change option to the D3 policy and get a new policy setup – D5, as shown in

equation 4.20. With D5, in addition to the advantage of startup waste reduction, it
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also protects the worker pool from making drastically different decisions in a short

period of time when the estimated capacities are not stable.

D5 = min(D3, Dprevious +∆), C = ∞ if unknown (4.20)

Considering master’s reported capacity, assuming a default capacity for newly started

masters, and limiting the change speed of the decisions all make the resource allo-

cation process more conservative and, in many cases, more reasonable. But each of

these options are contributing to the conservativeness from a different perspective.

To evaluate the behavior of the resource allocation when all these options are stacked

together, we use policy D6, as shown in equation 4.21.

D6 = min(D3, Dprevious +∆), C = C0 if unknown (4.21)

The final policy configuration – D7 in equation 4.22, makes the worker pool behave

the same as under D6 when calculating the decision for each master. However,

in addition to D6, D7 has the billing cycle option turned on, which enforces the

workers to terminate themselves only when their lifetimes are close to the multiples

of billing cycle. D7 makes the workers last for longer time without additional cost

on computing resource platforms that are billed upon time periods. This allows a

master to connect new workers faster when it appears during some workers’ extended

lifetime period as the worker pool does not need to request new resources to run those

worker on.

D7 = D6, enforces worker termination boundary (4.22)
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4.5 Decision Enforcement

The decision enforcement mechanism is decentralized. Every participating com-

ponent, namely the masters, the workers, and the worker pools, communicates with

the catalog server independently. No central process is coordinating the actions of

the participants. The interactions between the participants and the catalog server are

shown in Figure 4.1. The worker pool queries the masters’ status from the catalog

server periodically and sends a decision back when matched masters are found. The

worker pool is allocates new workers when the current decision is greater than the

previous one. The master’s interactions with the catalog server includes sending its

own status and retrieving distribution decision, both periodically. The worker queries

the catalog server for distribution decision as well, but only at when it needs to find

a new master to worker for. The remaining subsections specify the behaviors of each

participant in details.

4.5.1 Master

In addition to advertising its own status to the catalog server periodically, the

master queries the catalog server periodically to obtain the latest worker distribution

decisions. If a worker pool is responsible for supplying workers to a master, that

worker pool’s decision would specify how many workers it has decided to provide to

this master. The master is responsible for guaranteeing the number of workers it

receives from that worker pool does not exceed the decision. Because a worker would

notify the master which worker pool it is from upon connection, the master is able

to keep track of the number of workers it has received from each worker pool. If

the number of workers from a worker pool exceeds the decision (this could happen

because of the randomized master selection algorithm on the worker side, which will

be introduced soon), the master releases the exceeded amount of workers from that

pool and rejects future worker connection requests from that worker pool. Thus the

71



worker pool’s decision is enforced. Those released workers would immediately start

searching for a new master to work for.

4.5.2 Worker

Whenever a worker needs to find a master to work for, it queries the catalog server

to obtain a list of running masters as well as its worker pool’s worker distribution

decision. The worker then knows how many workers are already connected to each

master from its worker pool and how many workers its worker pool decides to provide

to each master. Based on these information, the worker calculates how many extra

workers each master can still receive from its worker pool. The worker then applies

a randomized algorithm to select a master to serve.

The randomized algorithm strives to make the probability of selecting a master

equal to the proportion of that master’s worker needs among all the masters. For

example, if a worker pool is serving workers to two masters – proj1 and proj2, and

the worker pool has decided that 100 workers should go to proj1 and 300 workers

should go to proj2. If 50 workers from that worker pool are already connected to

proj1 and 150 to proj2, a worker’s probability of choosing proj1 to work for would

be approximately 25%, which is the result of (100 - 50)/(300 - 150). Similarly, the

probability of selecting proj2 would be approximately 75%. When a worker has

finished serving a master, either because the master has completed all its tasks or the

master decides to release that worker for decision enforcement purposes, the worker

would repeat the above process to find a new master.

The worker’s randomized master selection is the system’s initial attempt to achieve

a decided distribution of workers among the masters. In practice, the randomized

algorithm may not deliver an accurate distribution in the first attempt, that is, more

workers from a worker pool might choose to connect to a master than the worker

pool has decided. In this case, the masters would actively release the extra amount
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of workers and those workers would each reselect a master to work for based on the

latest masters’ status. Eventually, the desired worker distribution will be accordant

with the worker pool’s decision.

4.5.3 Worker Pool

The worker pool has two main responsibilities: making the worker distribution

decision and allocating workers when needed. As discussed in the previous sections,

a worker distribution decision is made based on the user defined worker pool policy

and the runtime status of the masters. While the worker pool is running, it queries

the catalog server periodically to obtain the runtime status of the masters. Whenever

matched masters are found, the worker pool would examine the masters’ status and

make a new worker distribution decision. The decision is sent to the catalog server

immediately after it is made.

The other responsibility of the worker pool is to allocate and maintain a num-

ber of workers as its decision specifies. After a decision is made, the worker pool

compares the new decision with the number of workers it is maintaining. If more

workers are needed, the worker pool would request the extra amount of workers from

the underlying resource management system. The worker pool constantly check with

the resource management system to see if any of its workers has terminated (either

because of resource failures or normal completion). Whenever the number of main-

tained workers falls below the decision amount, new workers will be allocated to fill

the gap.

If the number of workers a worker pool is maintaining is greater than the decision

amount, then when a worker terminates, the worker pool does need to do anything

else. This happens when the masters’ worker needs are decreasing, for example, when

some of the masters are reaching completion or have already completed, or some of

the masters are entering a lower capacity stage. When a master’s worker needs is
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decreasing, it will disconnect some or all of its workers, either because the distribution

decision requires or there is no more tasks to do. A disconnected worker will time out

and terminate itself if it cannot find a master to work for within a certain amount of

time. In this case, the worker pool would notice the worker’s termination, however,

because the amount of maintained workers is still greater than the total needs, the

worker pool does not perform any extra actions.

To summarize, the worker pool is capable of scaling up the number of maintained

workers when new masters begin to execute or existing masters can take advantage of

more workers, as well as scaling down the maintained workers when the total worker

needs from the masters are decreasing.

4.6 System Stability

The capacity management architecture can be viewed as a feedback control loop

system[31]: the master measures the workers and tells the worker pool how many

workers it wants; the worker pool submits the exact number of workers (i.e. controls

the number of workers in the system); the submitted workers (once start running) are

then measured by the master, which leads to updated worker demand of the master.

The master is the plant as in the control theory feedback loop. The worker pool is the

controller. And the masters’ declared demand of workers is the system input. The

stability in this system refers to the ability that the number of workers can converge

to a stable amount under changes and does not oscillate around the stable state.

The capacity management system forms a negative feedback control loop by de-

sign, which produces stability. If the number of submitted workers is less than the

masters’ declared demand, the worker pool would add more workers into the system

to match the demand. If the number of submitted workers is greater than the de-

mand, however, the worker pool would never remove any worker from the system by

itself. Instead, the extra workers would be disconnected by the masters whose new

74



distribution decisions do not allow them to hold that many workers from the worker

pool. And these disconnected extra workers would exit the system only if they could

not find any suitable master to work for within a certain timeout. As such, the sys-

tem always applies a negative feedback signal to regulate the number of workers to

the declared demand, which forms the negative feedback loop.

Although negative feedback loops tend to reduce fluctuations in general, false

negative feedback signals may cause the system to oscillate, if not handled carefully.

The cache bounce effect introduced in section 4.3.4 may cause the reported capacity

to fluctuate in an opposite direction to the actually trend of the worker demand,

which creates a false feedback signal. Recall that in Figure 4.7 and 4.8, the estimated

capacity first drops when new workers are added and then returns to the stable level

as the new workers have the shared input data cached. Thus, in the system the

estimated capacity could decline, though temporarily, while the actual capacity does

not, or even increase (e.g. newly added workers are faster).

If the system removes workers immediately in response to the cache bounce capac-

ity decline , then the system might fall into oscillations. The reason for the oscillation

is that the removed workers would be added back into the system again when the ca-

pacity increases after the drop and the added workers would cause the cache bounce

effect again, which triggers a new round of removing workers and adding back work-

ers. As mentioned in section 4.4.2, the decision on a master is never reduced due to a

decline in the capacity. Thus, the system will not remove already connected workers

(or the master will not disconnect workers) in the case of a capacity decline. So, we

can conclude that the false feedback, which signals a capacity decline while it is not,

would not cause the system to oscillate.

The capacity management system is also capable of avoiding disastrous resource

waste that could be caused by a bad software configuration. When running tasks

remotely, the remote execution environment may not be configured as the task would
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expect. For example, a task may require the Python version to be above 3.0 while

the remote machines only have Python 2.7 installed. Or, a user may accidentally

forget to include a required file when describing the remote tasks. Without capacity

management, a user may allocate hundreds or thousands of computing nodes and

none of them could do useful work. And automatically retrying those failed tasks on

them, as many of the workflow management systems would do, only exacerbates the

waste. Bad configurations usually cause the task to fail very quickly, which leads to

a very low capacity (very short execution time). Thus with capacity management,

the system would have the opportunity to cut the resources according to the low

capacity, which prevents great waste.

4.7 Evaluation

All the experiments described below are conducted on the Condor pool maintained

at Notre Dame. To request a worker from the Condor pool, the worker pool submit

the worker program as a Condor job. Because there is a delay in between when a

Condor job is submitted and when a Condor job is executed, the masters will not see

worker connections until a certain amount of time has elapsed after the workers has

been requested for. We will see these effects in the evaluation results.

4.7.1 Experiment Setup

In order to evaluate the worker pool performance, we identify several distinct

workload patterns and worker pool configurations and run experiments on all the

combinations of them. The selected patterns of workloads are shown in the following

list:

• P1: single uniform batch

• P2: multiple uniform batches

• P3: multiple non-uniform batches
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• P4: random uniform batches

• P5: random non-uniform batches

Workload pattern P1 contains a single batch of 500 uniform tasks. Each task has 2

MB input, takes 15 seconds to execute, and generates 2 MB of output. Pattern P2

contains 5 batches of the same tasks as in P1 and one batch of tasks is submitted

after every 400 seconds. Pattern P3 has 5 batches of tasks submitted at the same

intervals as in P2, but the tasks between different batches are non-uniform. The

input data sizes of the tasks in the 5 batches are 3 MB, 1 MB, 5 MB, 1 MB and

10 MB respectively and the output data sizes are 2 MB, 1 MB, 3 MB, 1 MB, and

2 MB. The execution times on these tasks are all 15 seconds. Note that the tasks

within the same batch are still uniform in P3, which should result in more stable

capacity estimates. Pattern P4 contains the same uniform tasks as in P1 but they

are randomly put into 50 batches. Each batch contains from 1 to 100 tasks and the

time between when two adjacent batches are submitted ranges from 1 to 50 seconds.

Pattern P5 is similar to P4 except that the tasks are non-uniform across different

batches. The P5 tasks, both the input and output data sizes range from 1 MB to 5

MB, and the task execution times range from 5 to 15 seconds.

We create different pool policies by adding or replacing constraints in the policy

file in order to observe how the constraints affect the worker pool decisions over time.

All the policies as the max workers field set to 200. The following list shows the 7

distinct policy configurations used in our experiments:

• D1 = Trunning + Twaiting

• D2 = D1 +max change

• D3 = D1 + capacity

• D4 = D3 + default capacity

• D5 = D3 +max change

• D6 = D3 + default capacity +max change
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• D7 = D6 + billing cycle

Configuration D1 determines the worker needs by adding the Trunning and Twaiting

reported by that master. Under D1, the worker pool would ignore any master’s

capacity that is reported. D2 adds more constraints to D1 by limiting the change

speed of pool decisions to 60 per minute. D3 forces the worker pool to consider the

reported capacities while making decisions. The next four configurations all have the

capacity consideration turned on. In addition to D3, D4 requires the worker pool to

assume a default capacity for the masters that have not reported their capacities. D5

limits the change speed of pool decisions to 60 per minute in addition to D3. D6 has

all the constraints: it has the capacity consideration turned on, the ”max change”

set to 60 per minute, and the ”default capacity” set to 20. Finally, we add the

”billing cycle” constraint to D6 and get D7.

4.7.2 Results

Figure 4.9 and Figure 4.10 shows the runtime worker pool decisions and the

number of running tasks over time for each experiment. Each column shows the

results of the same workload with different pool policies and each row shows the

impacts of the same work pool policy under different patterns of workloads. For each

individual graph in two figures, the x-axis is time in seconds starting from 0, at which

the worker pool and the workload are started. The y-axis is the worker counts. The

”pool decision” curve shows the number of workers that the pool decides to maintain

over time, which comes from the log of the worker pool. The ”tasks running” curve

shows the number of tasks that are being executed on the workers and this curves is

generated from the log of the workload master.

For the row of pool configuration D1, the estimated capacities of different work-

loads over time are shown in the individual graphs. For the remaining graphs, the
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estimated capacity curves are omitted as they would be similar to those shown in

the corresponding first-row graphs. For workload P1, we can see that capacity first

increases as more tasks are being completed. This is because the tasks all share

the same input data. This effect is the same as that in Figure 4.8. Workload P2’s

tasks also share the same input, and its estimated capacities are quite stable after is

has reached its peak at around the 150 second point. For workload P3, we can see

that estimated capacities have noticeable differences when different batches of tasks

are being executed. This is as expected because the tasks between different batches

are non-uniform. For workload P4 and P5, the capacity curves show much more

fluctuations as the tasks are non-uniform.

We also summarize the sum of task execution times, the application turnaround

times, the sum of the times spent on workers, and the consumed billing cycles in

Table 4.2. The sum of task execution time does not include the data transfer time

for each task, but it provides a lower bound for the amount of time that needs to be

consumed on the resources. The sum of the worker time is the total time that we

have spent on the resources for each experiment. The billing cycles are calculated as

if the resources on billed upon a unit period of time and the unit period used in our

experiments is 20 minutes. That is, even if a resource has been only allocated for 5

minutes, it would add 1 full cycle to the billing cycles.

Now we discuss the results of the homogeneous workload – P1 under different

worker pool policies. This workload contains a total of 500 tasks. Under policy

D1, the worker pool would allocated as many workers as the number of unfinished

tasks without surpassing the policy defined max workers. Thus when the worker

pool discovered the new master from the catalog server, it decided to allocated 200

(the minimum value of max workers and the number of unfinished tasks) workers

to the master. 200 workers are requested from the underlying resource management

system (in our case it is Condor) immediately, but we only start to see the numbers
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of running tasks after approximately a minute. This is because of the delay between

when the resource is requested and when the resources is actually allocated and is

ready for use. As can be seen, under D1, the worker pool allocated more workers

than the application was able to use during its lifetime, which obviously resulted in

a waste.

Under D2, the worker pool requests for workers gradually, as can be seen from the

”pool decision” curve in Graph(D1, P1), however, it ended up allocating more than

the master needed as the runtime number of unfinished tasks kept staying beyond the

number of workers that the master actually needs. For policy D3, although the capac-

ity is taken into consideration, it did not take effect until it has been reported. And

before the capacity was reported, the worker pool has already requested for too many

workers. Policy P4 adds the default capacity into P3. It avoided the great waste at

the beginning, but with some sacrifice on the application performance (as can be seen

from the turnaround times in Table 4.2) because the default capacity in our case is

lower than the application’s actual capacity. However, if a user has prior knowledge

to the capacity of an application, he or she could set the default max accordingly

to minimize the sacrifice on performance. Policy D5 took away the default capacity

constraint and adds the limit on decision change to D5. Compared to policy D3,

the waste at the beginning is also greatly reduced, although not as much as with

D4. But the application performance on D5 is improved over D4 as D5 adds workers

more aggressively than D4. Policy D6 uses all the options – the capacity consider-

ation, the maximum decision change limit, and the default capacity. It is the most

conservative resource allocation policy of all and shows the minimum resource waste,

as can be seem from Graph(D7, P1). Policy D7 is the same as D6 except that it

enforces the termination boundary on the workers. The runtime ”pool decision” and

”tasks running” curves do not show much difference from those in the D6 graph, but

the consumed cycles would be reduced with policy D7 when the workloads run over
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a single billing cycle. The reduced billing cycle effect more noticeable on workload

P2 and P3 in Table 4.2 when you compare the billing cycles of policy D6 and D7.

For workload patterns other than P1, we can observe the similar pool policy

effects as those seen in the workload P1 results. In general, the more conservative the

policy is, the more resources waste is avoided. Conservatively allocating resources

does sometimes result in sacrifice of performance. For example, in workload P1,

the turnaround time on D4 is much greater than that on D1. This is because the

workers that the master needs are not provided in the earliest possible time with

a conservative resource allocation policy. However, when the capacity is taken into

account, the sacrifice of performance is minimized and even eliminated. As can

be seen from the turnaround times on the workloads other than P1, the application

performances are actually better on D6 (more conservative) than D1. This is because

the overheads that come from the master communicating with too many workers

shadows the performance gain from providing enough workers at the earliest times.

Another interesting observation is that, although the capacity estimation is not

specifically designed for workloads with non-uniform tasks, policy D6 was able to

achieve the similar application performances on workload P4 and P5 as the aggressive

allocation policy D1. And the total time consumed on the allocated resources and

the billing cycles used are greatly reduced with policy D6 and D7.
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Figure 4.9: Runtime Pool Decision, Tasks Running, and Estimated Capacity for
Workload Pattern 1, 2, and 3.
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Figure 4.10: Runtime Pool Decision, Tasks Running, and Estimated Capacity for
Workload Pattern 4 and 5.
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TABLE 4.2

TURNAROUND TIME, TOTAL WORKER TIME, AND BILLING

CYCLES CONSUMED FOR EACH EXPERIMENT

P1 P2 P3 P4 P5

Sum Exe Time (sec) 7500 15000 15000 41985 20505

Turnaround Time (sec) 209 2264 2336 1219 1276

D1 Sum Worker Time (sec) 57024 361214 398229 174295 183987

Billing Cycles (count) 232 1075 1120 448 422

Turnaround Time (sec) 213 2236 2891 1217 1276

D2 Sum Worker Time (sec) 39396 342048 502700 167661 179125

Billing Cycles (count) 183 1079 1325 317 417

Turnaround Time (sec) 208 1742 1856 1217 1261

D3 Sum Worker Time (sec) 55665 150326 145712 139886 73050

Billing Cycles (count) 200 827 837 253 117

Turnaround Time (sec) 294 1787 1814 1218 1262

D4 Sum Worker Time (sec) 21053 98295 109239 78412 74304

Billing Cycles (count) 73 368 577 108 155

Turnaround Time (sec) 212 1817 1778 1218 1265

D5 Sum Worker Time (sec) 27315 114680 103298 78875 67349

Billing Cycles (count) 117 680 554 131 123

Turnaround Time (sec) 255 1795 1816 1217 1259

D6 Sum Worker Time (sec) 19595 111012 113029 73397 69411

Billing Cycles (count) 71 567 619 98 108

Turnaround Time (sec) 260 1836 1845 1218 1260

D7 Sum Worker Time (sec) 19651 103682 136270 79553 66189

Billing Cycles (count) 71 264 405 111 124
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CHAPTER 5

APPLICATIONS

The tools described in this dissertation have been used to harness distributed

computing resources for real world scientific applications. The abstractions devel-

oped for static workloads have been applied in applications from bioinformatics and

economics. The capacity management architecture is implemented in theWork Queue

framework. We show two production systems, one from bioinformatics and one from

molecular modeling, that have used the capacity management feature in Work Queue

to manage resources for their dynamic workloads.

5.1 Bioinformatics

5.1.1 Static Workloads

The abstractions introduce in Chapter 3 have been applied in several bioinfor-

matics applications. Sequence alignment is one of the most important tasks in bioin-

formatics and is used in a variety of applications. Common variants of pairwise

sequence alignment can be solved using dynamic programming [72] and each requires

time proportional to the product of the two sequences considered. Prior parallel im-

plementations have been motivated by either the need to compare a single pair of

large sequences [81] or the need to compare many small sequences [75] for tasks such

as phylogenetic inference and genome assembly. Previous algorithms have imple-

mented the wavefront problem on dedicated clusters and parallel architectures such

as the Cell [92]. Our implementation achieves similar speedups, but requires only

sequential coding, and can execute on unreliable, loosely coupled machines.
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Figure 5.1: 100×100 Wavefront in Bioinformatics
A timeline of a 100×100 Wavefront problem implementing sequence alignment run-
ning on non-dedicated multicore Condor pool. 80 cores were available at the peak of
the execution. An overall speedup of 38X is achieved, the maximum possible is 50X.

In less than a day, we wrote a single process function in 156 lines of C++ that

performed alignment on a substring and propagated the required data for later steps.

Distributed sequence alignment was then tested on two large bacteria genomes us-

ing wavefront: a non-virulent lab strain of Anthrax (Bacillus anthracis str. Ames;

Genbank NC 003997) and its virulent ancestor strain (Bacillus anthracis str. ’Ames

Ancestor’; Genbank NC 007530). Each genome is approximately 5.3 million charac-

ters long, and the score of an optimal suffix-prefix alignment was computed using only

linear-space. An actual alignment (i.e., the path through the dynamic programming

matrix) is also attainable based on the divide-and-conquer Hirschberg technique [92],

which requires twice as much computation and a more complicated strategy.

Figure 5.1 shows a timeline of this alignment running using a 100×100 partition

of the problem. Each task takes about 117 seconds to run on a 1GHz CPU. On

the Condor pool, a maximum of 80 tasks running simultaneously was achieved. The

overall runtime was reduced from 13 days sequential to 8.3 hours with a speedup of

38X out of the maximum possible 50X.

We also explored the application of a heuristic for bioinformatics problems sim-

ilar to sequence alignment. SSAHA (Sequence Search and Alignment by Hashing
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Figure 5.2: Makeflow without Fast Abort
A timeline of SSAHA execution on 100 simultaneous workers without Fast Abort. As
can be seen, the long tail is almost as long as the peak computation period.

Algorithm) [74] is a bioinformatics tool designed to map one set of genetic data

onto another set of data. SSAHA is very similar to the popular bioinformatics tool

BLAST [7] because it creates a hash table for a set of subject sequences to speed

up the search of query sequences for matches. Unlike BLAST, SSAHA computes the

complete mapping and therefore can be used to discover detailed differences between

sequences and individuals. SSAHA is a publicly available sequential application.

Our implementation involves running the sequential application many times in par-

allel using the Makeflow and Work Queue abstractions. This allows us to harness the

Condor pool to complete our computation in a reasonable time.

Our implementation mapped 11.5 million sequences consisting of 11 billion bases

onto the genome Sorghum bicolor [77] (738.5 million bases). This is a large bioin-

formatics workload with the majority of execution time for each job dedicated to

mapping the queries and a small portion dedicated to generating hash tables. The

abstraction split a large sequential execution into nearly 2300 smaller sequential com-

putations that were run in parallel on workers submitted to our Condor pool. Fig-

ure 5.2 shows the execution of this job on a maximum of 100 simultaneous workers

without Fast Abort. There is an extremely prominent long-tail effect that nearly

doubles the total execution time. Figure 5.3 shows the same workload run with fast
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Figure 5.3: Makeflow with Fast Abort
A timeline of SSAHA execution on 100 simultaneous workers with Fast Abort. Com-
pared to the above figure, the tail is mostly eliminated.

abort enabled, which nearly eliminated the long-tail effect and more than halved our

total run time. The implementation using Fast Abort required 16 hours of runtime

compared to the sequential runtime of 65 days with a total speedup of 92X.

5.1.2 Dynamic Workloads

The capacity management architecture has been implemented in the Biocompute

system [20] – a production system that facilitates biology researchers to run select

bioinformatics applications on campus distributed computing resources. Running a

bioinformatics workload is as easy as selecting a desired bioinformatics application

such as BLAST [7], answering a few application specific questions, and then clicking

a submit button. The web user interface of the Biocompute system is shown in

Figure 5.4. The web portal then generates a Makeflow script which describes a

workflow according to the user’s answers and the Makeflow script is executed by

the Makeflow engine using the Work Queue framework. Upon job completion, the

users are able to view and share their data, job information, and analytical results

within the web portal. As application specific code is confined to the web portal, the

backend is completely generic and its improvements are broadly applicable.

Demand for the computing resources provided by Biocompute is primarily met
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Figure 5.4: Biocompute Web Portal

through the Condor batch system. This resource has contributed 62.8 CPU years

since early 2010 with the majority of cycles shared among the top 30 users spanning

the departments of biology, biochemistry, and computer science. The largest job on

Biocompute–requiring 9.3 CPU years and involving more than a million independent

tasks–completed in just 16 days.

The Biocompute system was originally configured to execute the generated Make-

flow scripts directly with the Condor batch system. That is, all tasks in the Makeflow

scripts are submitted as individual Condor jobs. However, this setup suffers from slow

startup overhead inherent in the Condor system. And, the benefit of vast off-campus

resources (e.g. thousands of computing nodes from Wisconsin-Madison and Purdue)

is usually spoiled by the low transfer rate. Furthermore, it is difficult to adjust the

resource allocation for submitted workflows at runtime. Last but not least, submit-

ting each task as a Condor job is equivalent of matching the number of resources

to the number of tasks, which might cause resource waste as shown in the previous

capacity management chapter. These problems inspired the switch to Work Queue,

which has the superior resource management capability.

In the current Biocompute system, each Makeflow script is invoked as a Work

Queue master. That is, any workflow constructed by the web portal runs a Work

Queue master in the system. An external worker pool, managed by the Biocompute
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Figure 5.5: Biocompute Worker Pool Activity in 2013

system administrator, is responsible for allocating resources for the Biocompute mas-

ters. Since the capacity management architecture is fully implemented in the Work

Queue framework, the Biocompute system is now taking advantage of this resource

management capability. All the Biocompute masters advertise their own status to the

catalog server deployed at Notre Dame. The Biocompute worker pool is configured to

respect the master capacity and will allocate resources accordingly. And because the

workflow runs as a Work Queue master, the user is now able to add additional grid

or cloud resources to the execution of the workflow at runtime. The user only needs

to start some extra workers on the grid or the cloud platform (with tools provided in

the CCTools software) and point them to the desired master’s hostname and port,

which could be obtained from the catalog server.

Figure 5.5 shows the activity of the Biocompute worker pool from Feb 11, 2013

to Mar 25, 2013. The solid curve shows the number of submitted workers over

time. The dotted curve shows the number of workers that are actually connected

to the biocompute masters over time. As can be seen, the worker pool is able to

automatically request for resource when there are workloads present and reduce them

as the workloads finish. Starting from Feb 23, the worker pool is configured to always
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keep 5 workers submitted, as can be seen from the solid curve to the left of the Feb

23 point. These 5 constantly running workers allows workers to connect to a new

workload immediately when the workload starts. Without these workers, the new

workload would have to wait for the underlying resource management system (e.g.

Condor) to allocate the resources for the workers requested by the worker pool,

which typically involves a delay ranges from tens of seconds to a few minutes. The

5 workers may timeout and quit when there are no Biocompute masters, in which

case, the worker pool would resubmit workers to compensate for the timed out ones.

5.2 Economics

The wavefront abstraction can represent a number of dynamic economic problems.

Consider, for example, the competition between two microprocessor vendors. Each

firm produces microprocessors and engages in R&D to improve the clock speed. That

game ends when they reach limits imposed by physics. Economic models examining

such dynamic games would discretize the problem by assuming that there are N

possible efficiencies and each firm begins with efficiency level 1. The state of a two-

player game is denoted by the vector of efficiencies, (i,j). At each such state, each

firm competes for sales of the chips of those efficiencies but each firm also wants to

improve its efficiency. When the game reaches the state (N ,N) the dynamics are

done and we have reached a static situation which can be computed directly. If the

state of the game is (N − 1,N) then firm 1 still works to improve its efficiency and

its incentives to work on R&D are affected by the anticipated profits it receives when

the game goes to (N ,N). This is also true for player 2 in the state (N ,N−1). Hence,

the solution at (N ,N) allows us to solve (N − 1,N) and (N ,N − 1). Similarly, those

solutions allow us to solve (N − 2,N), (N − 1,N − 1) and (N ,N − 2). The wavefront

abstraction sweeps through the states until we have solved the dynamic game at all

states (i,j), 1 ≤ i,j ≤ N .
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Figure 5.6: 500×500 Wavefront in Economics
A timeline of a 500×500 Wavefront problem in economics running on non-dedicated
multicore Condor pool. Because many of the remote CPUs were faster than the
submitting CPU, the overall speedup of 180X is greater than the number of CPUs.

This kind of game arises in many dynamic economic problems. See [42, 97, 96]

for original papers on the learning curve, [85, 87, 86, 30] for examples of dynamic

R&D races, and [88] for an example from the exhaustible resources literature. All of

these results are limited in scope because a sequential implementation dramatically

limits the number of parameters. For example, the learning and R&D papers assume

only two firms and a small number of steps. This is an unreasonable assumption

since there are many firms in each industry, particularly at the early stages where

innovation is rapid and many firms are competing to be one of the few survivors.

These models are essential for a serious examination of antitrust policies that limit

how fiercely firms may compete and tax policies that are supposedly designed to

encourage innovation.

Using the wavefront abstraction, we can easily carry out problems many orders of

magnitude larger than have been attempted before. With less than a day of coding,

we ported a Nash equilibrium function for two players with four parameters from

Mathematica into a 77-line C program usable with Wavefront. On a single input,

this function requires about 7.6 seconds to complete on a 1GHz CPU.

Figure 5.6 shows a timeline of this workload running on the Condor pool. The
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workload quickly reached the maximum available parallelism of between 120 and 160

CPUs. An overall speedup of 182X was achieved, reducing the sequential runtime

from 22 days to 2.9 hours. The speedup achieved was faster than ideal because many

of the remote CPUs were faster than the submitting machine on which the function

was benchmarked.

5.3 Molecular Modeling

Molecular modeling is a research area that uses theoretical methods and compu-

tational techniques (simulations) to model or mimic the behavior of molecules. It

usually requires large amount of computing power, however, traditional simulation

techniques lack the scalability to take advantage of the vastly available grid and cloud

computing resources. Accelerated Weighted Ensemble or AWE package provides a

Python library for adaptive sampling of molecular dynamics. This method requires

only a large number of short calculations and incurs minimal communication between

computing nodes, which creates the potential to scale up the computation onto a wide

range of distributed computing platforms.

A team of researchers from the University of Notre Dame and Stanford University

created a protein folding simulation system that uses the AWE technique to run thou-

sands of short Gromacs and Protomol simulations in parallel with periodic resampling

to explore the rich state space of a molecule. Using the Work Queue framework, these

simulations are executed by workers (managed by worker pools) distributed across

thousands of CPUs and GPUs drawn from the Notre Dame, Stanford, and commer-

cial cloud providers. At the scale of thousands of cooperative computing nodes, the

resulting system was able to simulate the behavior of a protein at an aggregate sam-

pling rate of over 500 ns/hour, covering a wide range of behavior in days rather than

years. Figure 5.7 shows some scientific results obtained through the AWE system –

two Fip35 folding pathways.
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Figure 5.7: Fip35 Folding Pathways found from the AWE Network
Colors blue, grey, and red represent unfolded, intermediate, and folded conformations,
respectively.

To demonstrate the scalability on heterogeneous resources, we show a timeline

of three AWE applications started at different points over a three day period along

with the resources that are provided to them in Figure 5.8. All three masters share

the same set of workers (managed by multiple worker pools) and receive a certain

amount of workers according to their changing needs. Workers from the same resource

provider is managed by the same single worker pool. The workers are requested from

the following resource platforms: Notre Dame SGE cluster of 6000 cores, Notre Dame

Condor pool of 8000 cores (with the ability to request resources from Condor pools at

Purdue University and the University of Wisconsin-Madison), Stanford ICME(a ded-

icated cluster at Stanford University, consisting of about 200 CPUs and 100 NVIDIA

C2070 GPUs), Amazon EC2, and Microsoft Azure. The latter two platforms are

commercial cloud platforms which provide virtually unlimited amount of virtual ma-

chines.

Figure 5.8 contains three graphs that show the number of connected workers over

time for each of the three masters. The progression of the execution is as follows:

Master 0 (M0) is started and runs alone for 11 hours. The second master – M1 is

then started. Because M0 has entered the straggling phase which does not need as

many workers, the workers that used to work for M0 starts to migrate to M1. The
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Figure 5.8: Multiple Worker Pools Providing Workers to Three AWE Applications

third master – M2 started at hour 18. New workers are started by the pool and some

workers from M0 and M1 are migrated to M2. As can be seen through the entire

timeine, when one master enters a slow phase (needs less workers), others are able to

share the available resources.
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CHAPTER 6

CONCLUSION

This work has been focusing on the question of how many computing resources

should be allocated for a given workload. We have answered this question for two

types of workloads – static and dynamic workloads. We have described abstractions

as a solution for regular static workloads and capacity management as a solution

for dynamic workloads. And we have shown the applications of these solutions in

bioinformatics, economics, and molecular modeling.

For static workloads, we have demonstrated how simple high level abstractions can

be used to scale regularly structured problems up to clusters of multicore computers.

We have made the following key observations:

• It is feasible to accurately model the performance of large scale abstractions
across a wide range of configurations, allowing for the rational selection of
appropriate resources.

• Processes are a realistic alternative to threads for programming multicore sys-
tems, even on I/O intensive tasks.

• Abstractions are easy for non-experts to program, provided there is a good
match between the application structure and the application.

• The All-Pairs and Wavefront abstractions can be scaled up to hundreds of cores,
achieving good performance even under adverse conditions.

• General abstractions, like Makeflow, are able to deal with more kinds of ap-
plication structures; however, they might not achieve the same performance as
specific abstractions.

For dynamic workloads, we have shown how resource waste can arise when run-

ning elastic applications in a distributed computing environment and presented the
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capacity management architecture as a solution to avoid such waste. Our solution

uses an external resource allocator to allocate and manage computing resources for

elastic applications based on their runtime performance and capacity measurements.

In addition to the application’s runtime measurements, we have identified the follow-

ing factors that can affect the effectiveness of the resource allocator: the limit on the

speed of allocating new resources, the default capacity for applications that do not

yet have capacity estimations, and the billing cycle of the computing resources. We

have shown how these factors, individually or combined, can affect the quality of the

resource allocation. By evaluating the resource allocator’s performance with differ-

ent workload patterns ranging from highly homogeneous to completely random, we

have demonstrated that our solution can significantly reduce resource waste without

sacrificing application performance.

There are many avenues of future work. For static workloads, we have outlined

a two-level hierarchy of implementations for abstractions, but the system could be

generalized to support solving very large problems across the wide area with deeper

nesting. Additional implementations of abstractions on specialized architectures such

as the Cell or FPGAs might be effective ways of transparently adding such devices to

large computations. For dynamic workload, there are several potential improvements

that are worth studying for the capacity management architecture. In the current

implementation, the workers would only exit the system after a fixed timeout. If

this timeout can be determined at runtime based on some cost variables, the overall

resource waste reduction may be further improved. New capacity estimation algo-

rithms can be constructed measure the resource needs even more precisely. And the

system may apply different capacity estimation algorithm on different types of appli-

cation, if the type of application could be somehow determined in advance. Another

direction is to reduce the possibilities of false negative feedback, as seen in the cache

bounce effect, so that the resource allocator can make more aggressive decisions (re-

97



duce workers connected to a master immediately after its capacity decreases) without

fall into oscillations. Last but not least, we can exploit various resource providers’

specialties, such as Amazon EC2’s spot instance, to make more cost-effective resource

allocation strategies.
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